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prewhitened lrv estimation robust to nonstationarity

1 Introduction

Heteroskedasticity and autocorrelation robust (HAR) inference requires estimation of the relevant

asymptotic variance or simply the long-run variance (LRV). A large literature has considered this

problem. In econometrics, Andrews (1991) and Newey and West (1987; 1994) extended the scope of

kernel-based autocorrelation and heteroskedastic consistent (HAC) estimators of the LRV [see also

de Jong and Davidson (2000) and Hansen (1992)]. Test statistics normalized by HAC estimators

follow standard asymptotic distributions under the null hypothesis under mild conditions.

It was early noted that classical HAC estimators lead to test statistics that do not correctly

control the rejection rates under the null hypothesis when there is strong serial dependence in the

data. A vast literature has considered this issue. Kiefer, Vogelsang and Bunzel (2000) and Kiefer

and Vogelsang (2002; 2005) introduced the fixed-b LRV estimators for stationary sequences which

are characterized by using a fixed bandwidth [e.g., the Newey-West/Bartlett estimator including all

lags]. The crucial difference relative to HAC estimators is that the LRV estimator is not consistent

under fixed-b asymptotics and inference is nonstandard. Test statistics under the null hypotheses

asymptotically follow nonstandard distributions whose critical values are obtained numerically.

This has limited the use of fixed-b in practice. The advantage of the fixed-b framework is that it

yields test statistics with more accurate null rejection rates when there is strong dependence.1

There is widespread evidence that the processes governing economic data are nonstationary.

By nonstationary we mean non-constant moments. As in the literature, we consider processes

whose sum of absolute autocovariances is finite. That is, we rule out processes with unbounded

second moments (e.g., unit root). The latter can be handled by taking first-differences or applying

some de-trending technique. Nonstationarity can occur for several reasons: changes in the moments

induced by changes in the model parameters that govern the data (e.g., the Great Moderation

with the decline in variance for many macroeconomic variables or the effects of the COVID-

19 pandemic); smooth changes in the distributions of the processes that arise from transitory

dynamics; and so on. HAR inference requires the estimation of the LRV of some relevant process,

Vt say.
2 We first analyze the case with E(Vt) = 0 for all t, since it is the leading case that applies

under the null hypothesis. This will allow us to derive useful properties to construct bandwidths

(and so on) to have tests with the correct null rejection rates. Thus, under the null hypothesis,

nonstationary occurs through time-varying autocovariances E(VtVt−k). We recognize that in some

cases, the null hypothesis may involve a non-constant mean (e.g., when the model is misspecified).

1See Jansson (2004) and Sun, Phillips and Jin (2008) for theoretical results based on asymptotic expansions.
2For example, in the linear regression model Vt = xtet where xt is a vector of regressors and et is a disturbance.
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As in the literature, we do not address this case since the results can only be obtained on a case

by case basis. Under the alternative hypothesis, E(Vt) ̸= 0, and E(Vt) as well as E(VtVt−k) can

be time-varying. In most HAR inference problems the leading case is with a non-zero mean. The

literature has so far not properly addressed this leading case. Our aim is to devise a method for

this leading case that delivers useful estimates such that the tests have good power. Hence, we

shall also consider the properties of our estimator when the mean of Vt is non-zero and show that

it leads to test having good monotonic power, unlike what is available in the literature.

The objective of this paper is to propose an estimator of the LRV that has the following

properties: (i) it can be used for any hypothesis testing problem both within and outside the

linear regression model and is valid under both stationarity and nonstationarity; (ii) it can be used

without the need to develop further asymptotic analyses to determine the null limiting distribution

of the test statistics; (iii) it leads to tests that have accurate null rejection rates even with strong

dependence; such tests are consistent in any hypothesis testing problem, and in particular, in

testing problems characterized by a nonstationary alternative hypothesis.3 None of the existing

procedures satisfies all three properties. Fixed-b methods rely on nonstandard limit theory and

require one to derive the null limiting distribution on a case-by-case basis.4 Casini (2023a) showed

that the original fixed-b methods are not theoretically valid under nonstationarity since the null

limiting distribution of the test statistics is then not pivotal. More recently, a variant of the

fixed-b approach [see, e.g., Sun (2014) and Lazarus, Lewis, Stock and Watson (2018)] considered

the use of small-b asymptotics (i.e., small-bandwidths) in conjunction with fixed-b critical values.

In general, the latter methods do not satisfy (i)-(ii) since they use fixed-b critical values, and we

show below that they may not lead to consistent tests under nonstationary alternative hypothesis.

Traditional HAC estimators satisfy (i)-(ii) since they are consistent for the LRV so that a test

statistic studentized by an HAC estimator follows asymptotically a standard distribution. A long-

lasting problem with HAC estimators is that they lead to HAR tests that can be oversized when

there is strong dependence. To address this issue, Andrews and Monahan (1992) proposed the

prewhitened HAC estimators which substantially reduce the oversized problem under stationarity

with HAR tests having null rejection rates similar to those of recent methods based on fixed-b [e.g.,

the EWP and EWC methods of Lazarus et al. (2021) and Lazarus et al. (2018), respectively].

However, we show theoretically that existing prewhitened and non-prewhitened LRV estimators

3By nonstationary alternative hypothesis we mean alternative hypothesis such that E(Vt) is time-varying.
4Lazarus, Lewis and Stock (2021) pointed out the usefulness for empirical work of having test statistics that

follow asymptotically standard distributions rather than nonstandard distributions whose critical value has to be
obtained by simulations.
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lead to HAR tests that are not consistent in contexts characterized by nonstationary alternative

hypotheses. This has been a recurrent problem in the time series econometrics literature.5 It

occurs, for instance, when using tests involving structural breaks based on estimating the model

under the null hypothesis; e.g., tests for forecast evaluation [e.g., Diebold and Mariano (1995),

Giacomini and White (2006) and West (1996)], tests for forecast instability [cf. Casini (2018),

Giacomini and Rossi (2009, 2010) and Perron and Yamamoto (2021)], CUSUM tests for structural

change [see, e.g., Brown, Durbin and Evans (1975) and Ploberger and Krämer (1992)] tests and

inference in time-varying parameters models [e.g., Cai (2007) and Chen and Hong (2012)], tests

and inference for regime switching models [e.g., Hamilton (1989) and Qu and Zhuo (2020)].

To improve the power properties of HAR tests based on HAC estimators, Casini (2023b)

proposed to modify the HAC estimators by adding a second kernel which applies smoothing over

time. Such double kernel HAC estimators (DK-HAC) satisfy properties (i)-(iii) except that they

can be oversized when there is high serial correlation. We introduce a novel nonparametric non-

linear VAR prewhitening procedure to apply prior to constructing the DK-HAC estimators. The

key property is that our prewhitening procedure is applied locally in time through nonparametric

time smoothing. This allows us to account flexibly for the time-varying second-order proper-

ties of the data and to reduce the asymptotic bias arising from nonparametric estimation. Our

prewhitening is robust to nonstationarity unlike previous prewhitened procedures [e.g., Andrews

and Monahan (1992), Preinerstorfer (2017), Rho and Shao (2013) and Xiao and Linton (2002)].

The latter are sensitive to estimation errors in the whitening step when there is nonstationarity in

the autoregressive dynamics. For example, with AR(1) prewhitening the resulting LRV estimator

is given by ĴHAC,pw = ĴHAC,V ∗/(1 − â1)2 where â1 is the estimated parameter in the regression

Vt = a1Vt−1 + V ∗
t involving the process of interest {Vt} and ĴHAC,V ∗ is a classical HAC estimator

applied to the prewhitened residuals {V ∗
t }. Under nonstationarity in {Vt}, â1 is biased toward one,

[cf. Perron (1989)]. This makes the recoloring step unstable as (1 − â1)2 approaches zero and more

so as the nonstationarity increases. Hence, ĴHAC,pw is inflated and test statistics lose power.

The consistency, rate of convergence and MSE of the new prewhitening procedure are estab-

lished under nonstationarity using the segmented locally stationary framework. We then establish

the consistency, rate of convergence and minimax MSE bounds for the DK-HAC estimator un-

der general nonstationarity (i.e., unconditionally heteroskedastic processes) and discuss how these

5Simulation evidence of serious (e.g., non-monotonic) power problems was documented by Altissimo and Corradi
(2003), Casini (2018), Casini and Perron (2019, 2021a, 2020), Chan (2022b), Chang and Perron (2018), Crainiceanu
and Vogelsang (2007), Demetrescu and Salish (2020), Deng and Perron (2006), Juhl and Xiao (2009), Kim and
Perron (2009), Martins and Perron (2016), Otto and Breitung (2021), Perron and Yamamoto (2021), Shao and
Zhang (2010), Vogelsang (1999) and Zhang and Lavitas (2018) among others.
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results can be used to show that the prewhitened DK-HAC estimators are valid under general

nonstationarity. The new minimax MSE bounds generalizes the MSE bounds in Andrews (1991)

as follows. Andrews (1991) expressed the bounds in terms of the distributions of two different

second-order stationary processes. The two distributions provide upper and lower bounds, respec-

tively, to the autocovariances of the nonstationary processes in some class. We show that this class

can be enlarged substantially if the two distributions are taken to be those of some nonstationary

processes that satisfy segmented locally stationarity. This allows for more variability of E(VtVt−k)
and serial dependence of {Vt}. Thus, our bounds apply to a richer class of processes. The new

bounds also provide information on how nonstationarity influences the estimation bias.

The prewhitened DK-HAC estimators lead to HAR tests with null rejection rates close to the

nominal even with strong dependence. Furthermore, we show theoretically that the prewhitened

DK-HAC estimators lead to HAR tests that are consistent even under nonstationary alternative

hypotheses whereas existing HAC-based and fixed-b-based HAR tests are not consistent with their

power converging to zero as nonstationarity increases. The simulations demonstrate that these

theoretical results provide accurate predictions about the finite-sample behavior of the tests.

The paper is organized as follows. Section 2 introduces the nonlinear VAR prewhitening pro-

cedure and its asymptotic results are established in Section 3. Section 4 establishes the theoretical

validity of the DK-HAC estimators under general nonstationarity and presents new minimax MSE

bounds. Section 5 presents some theoretical results about the power of HAR tests under nonsta-

tionary alternative hypotheses. Section 6 presents the simulation results. Section 7 concludes. The

supplemental materials [cf. Casini and Perron (2021b)] contain all mathematical proofs.

2 The Statistical Environment

HAR inference requires the estimation of asymptotic variances of the form J ≜ limT →∞JT where

JT = T −1
T∑

s=1

T∑
t=1

E(Vs(β0)Vt(β0)′),

with Vt(β) a random p-vector for each β ∈ Θ ⊂ Rpβ and E(Vt(β0)) = 0 for all t under the null

hypothesis provided that the underlying model is correctly specified. We allow for E(Vt) ̸= 0 in

Section 5 when we analyze the theoretical properties of the power of the tests. For the linear

regression model yt = x′
tβ0 + et, we have Vt(β0) = xtet. More generally, in nonlinear dynamic
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models, we have under mild conditions,

(BT JT BT )−1/2
√

T (β̂ − β0) d→ N (0, Ipβ
),

where BT is a nonrandom pβ × p matrix. Often it is easy to construct estimators B̂T such that

B̂T − BT
P→ 0. Thus, one needs a consistent estimator of J = limT →∞ JT to construct a consistent

estimator of limT →∞ BT JT B′
T . Our goal is to consider the estimation of J under nonstationarity.

Under nonstationarity the autocovariance of Vt depends on the calendar time at which it is

computed in addition to the lag. That is, Γu (k) ≜ E(VT uV ′
T u−k) where u = t/T for some lag

k ∈ Z. The rescaled time index u ∈ [0, 1] is introduced because under nonstationarity we use

the infill asymptotics. We now define the local spectral density of Vt at time u and frequency ω,

f (u, ω). It is an important quantity because it summarizes the second-order properties of Vt. It

is defined as the squared modulus of the transfer function A (u, ω) where the latter appears in the

spectral representation of Vt [see eq. (S.1) in the supplement]. That is, f (u, ω) = |A (u, ω) |2.
The local spectral density can also be defined implicitly from the definition of c (u, k) which is the

approximation to the local autocovariance Γu (k) where

c (u, k) ≜
� π

−π

eiωkf (u, ω) dω, (2.1)

and i =
√

−1. In fact, Lemma S.A.1 in Casini (2023b) showed that, under the assumptions we

introduce below, Γu (k) = c (u, k)+O (T −1) where O (T −1) is the error due to the infill asymptotic

approximation. Eq. (2.1) relates the local autocovariance of {Vt} at rescaled time u and lag k

to its local spectral density at u. Thus, the nonstationary properties of {Vt}, which are reflected

in the time-varying behavior of the autocovariance function Γu (k), depend on the smoothness

properties of f (u, ω) in u. For example, if {Vt} is stationary, then Γu (k) = Γ (k) for all u, c (u, k)
is constant in u, f (u, ω) = f (ω) and (2.1) reduces to Γ (k) =

� π

−π
eiωkf (ω) dω. These coincide with

textbook definitions used under stationarity [see, e.g., Brillinger (1975)]. If f (u, ω) is continuous

in u then {Vt} is locally stationary [cf. Dahlhaus (1997)].6 For example, consider a time-varying

AR(1) Vt = a (t/T ) Vt−1 + ut where ut is a zero-mean i.i.d. process with unit variance and a (·)
is continuous with a (t/T ) ∈ (−1, 1) for all t. Then Vt is a locally stationary AR(1) with a local

spectral density f (u, ω) that is continuous in u. We impose restrictions on the smoothness of

f (u, ω) in u which allow for considerable forms of nonstationarity in {Vt} including most of the

6In econometrics, locally stationary processes are often referred to as time-varying parameter processes.
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nonstationary models used in econometrics.7

Assumption 2.1. (i) {Vt} is zero-mean with local spectral density f (u, ω) that is piecewise Lips-

chitz continuous with m0 discontinuity points; (ii) f (u, ω) is twice continuously differentiable in

u at all continuity points with bounded derivatives (∂/∂u) f (u, ·) and (∂2/∂u2) f (u, ·), and Lip-

schitz continuous in the second component; (iii) (∂2/∂u2) f (u, ·) is Lipschitz continuous at all

continuity points; (iv) f (u, ω) is twice left-differentiable at all discontinuity points with bounded

derivatives (∂/∂−u) f (u, ·) and (∂2/∂−u2) f (u, ·) and has piecewise Lipschitz continuous deriva-

tive (∂2/∂−u2) f (u, ·).

Assumption 2.1 implies that {Vt} is segmented locally stationary (SLS) (see Definition S.A.1

in the supplement). It is similar to Assumption 3.1 in Casini (2023b) where the latter imposes

smoothness conditions on the transfer function A (u, ω) whereas here we directly make assumptions

on the local spectral density f (u, ω). The class of SLS processes allows for relevant features

such as structural change, regime switching-type and threshold model and includes general time-

varying parameter processes, locally stationary processes and stationary processes.8 Assumption

2.1 requires f (u, ·) to be twice differentiable at the continuity points and left-differentiable at

the discontinuity points. The zero-mean assumption holds under the null hypothesis. To focus

on the main intuition, we first consider the case of SLS processes and then extend the results to

general nonstationarity processes in Section 4.9 The latter require more technical notations and

assumptions. In Section 2.1 we present the prewhitening DK-HAC estimator while in Section 2.2

we discuss its data-dependent bandwidths.

2.1 Prewhitening DK-HAC Estimator

Under Assumption 2.1, the argument at the beginning of Section 2.1 in Casini (2023b) suggests

that J = 2π
� 1

0 f (u, 0) du. The right-hand side can be seen as a function, say f̃ (ω), evaluated at

the zero frequency ω = 0. The intuition behind prewhitening is simple, though the mechanics under

nonstationarity are quite different. Suppose one is estimating f̃ (0) nonparametrically by averaging

asymptotically unbiased estimators of f̃ (ω) at a number of points ω in a neighborhood of 0. The
7A function g (·) : [0, 1] 7→ R is said to be piecewise (Lipschitz) continuous if there exists a finite subdivision

{x0, x1, . . . , xn} of [0, 1] where x0 = 0 and xn = 1, such that for all i ∈ {1, 2, . . . , n} g is (Lipschitz) continuous
on (xi−1, xi).

8For general time-varying parameter processes we mean linear and nonlinear processes whose parameters can
change smoothly as well as abruptly. See Example 2.1 in Casini (2023b) for some examples.

9For general nonstationarity we mean a process with a time-varying spectral density that does not satisfy
piecewise Lipschitz continuity.
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flatter is the function f̃ (ω) around 0, the smaller the estimation bias. The idea is to transform

the data such that the function of the transformed data, say f̃ ∗(ω), is flatter in the neighborhood

of ω = 0. Then, using the transformed data one can estimate f̃ ∗(0) by averaging asymptotically

unbiased estimators of f̃ ∗(ω) at points ω in the neighborhood of 0. The resulting bias should

be less than that incurred by estimating f̃ (0) since f̃ ∗(ω) is flatter than f̃ (ω). Finally, one can

apply the inverse of the transformation from f̃ (ω) to f̃ ∗(ω) to obtain an estimator of f̃ (ω) from

the estimator of f̃ ∗(ω). This is how it works under stationarity. However, under nonstationarity

one applies both the transformation and the inverse transformation locally in time, otherwise the

prewhitening procedure may be unreliable as nonstationarity induces an additional source of bias

in both the transformation and its inverse.

The proposed prewhitening procedure is based on the following three steps:

Step 1 (whitening step): Divide the sample in ⌊T/nT ⌋ blocks, each with nT observations. Let

V̂t = Vt(β̂), where β̂ is a
√

T -consistent estimator of β0. For each block r = 0, . . . , ⌊T/nT ⌋, run
the following VAR(pA),

V̂t =
pA∑
j=1

Âr,jV̂t−j + V̂ ∗
t for t = rnT + 1, . . . , (r + 1) nT , (2.2)

where Âr,j for j = 1, . . . , pA are p×p least-squares estimators and V̂ ∗
t = V ∗

t (β̂) are the prewhitened
residuals. The VAR in (2.2) is used to “soak up” some of the serial dependence in V̂ ∗

t and to leave

one with residuals {V̂ ∗
t } that are closer to white noise.10 That is why it is called “whitening step”.

Step 2 (recoloring step): Take the prewhitened residuals V̂ ∗
t , transform them by applying an

inverse transformation V̂ ∗
t 7→ V̂ ∗

D,t = D̂tV̂
∗

t where D̂t = (Ip − ∑pA
j=1 ÂD,t,j)−1 with ÂD,t,j = Âr,j for

t = rnT +1, . . . , (r + 1) nT . This implies that the transformed residuals V̂ ∗
D,t have been “recolored”

(i.e., the dependence has been added back). Note that the matrix D̂t is the same for all t in a given

block. In this way the appropriate amount of dependence is added back, i.e., no contamination

from possibly different strengths of dependence occurring in other blocks.

Step 3 (prewhitened DK-HAC estimation): Construct the prewhitened DK-HAC estimator

10Since the residuals {V̂ ∗
t } are closer to a white noise process, they have a flatter spectral density at ω = 0 than

{V̂t} because a white noise process has a flat spectral density.
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ĴT,pw using V̂ ∗
D,t:

Ĵpw,T

(
b̂∗

1,T , b̂∗
2,T

)
= T

T − p

T −1∑
k=−T +1

K1
(
b̂∗

1,T k
)

Γ̂∗
D (k) , (2.3)

where Γ̂∗
D (k) ≜ nT

T − nT

⌊(T −nT )/nT ⌋∑
r=0

ĉ∗
T,D (rnT /T, k) ,

with K1 (·) a real-valued kernel in the class K3 defined below, b̂∗
1,T is a data-dependent bandwidth

sequence to be discussed below, nT → ∞, and

ĉ∗
D,T (rnT /T, k) ≜


(
T b̂∗

2,T

)−1∑T
s=k+1 K∗

2

(
((r+1)nT −(s−k/2))/T

b̂∗
2,T

)
V̂ ∗

D,sV̂
∗′

D,s−k, k ≥ 0(
T b̂∗

2,T

)−1∑T
s=−k+1 K∗

2

(
((r+1)nT −(s+k/2))/T

b̂∗
2,T

)
V̂ ∗

D,s+kV̂ ∗′
D,s, k < 0

,

K∗
2 being a kernel, b̂∗

2,T a data-dependent bandwidth sequence to be defined below.

In order to guarantee positive semi-definiteness, one needs to use a data taper or, e.g., for

k ≥ 0,

K∗
2

(r + 1) nT − (s − k/2)
T b̂∗

2,T

 =
K2

(r + 1) nT − s

T b̂∗
2,T

K2

(r + 1) nT − (s − k)
T b̂∗

2,T

1/2

,

see Casini (2023b).

In Step 1 the the last block is t = ⌊T/nT ⌋ nT + 1, . . . , T . The order of the VAR, pA, can

potentially change across blocks but, for notational ease, we assume it is the same for each r.

The choices of nT and how to optimally split the sample depend on the property of the spectrum

of {Vt(β̂)}. A test for breaks versus smooth changes in the spectrum of {V̂t} is introduced in

Casini and Perron (2023). The latter could be employed here to efficiently determine the sample-

splitting. This would result in the sample being split in blocks with the property that within each

block {Vt(β̂)} is locally stationary. However, this is not required for the theoretical validity. The

least-squares estimation within blocks yields consistent estimators Âr,j for some Ar,j even when

the fitted VAR is not the true model. The fitted VAR is used only to yield residuals {V̂ ∗
t } that are

closer to white noise so that their spectral density at zero is flatter, implying less asymptotic bias

when estimating it nonparametrically.

Below we assume that Âr,j
P→ Ar,j for some Ar,j ∈ Rp×p for all r and j which follow from

8
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standard arguments. For K1 we suggest using the Quadratic Spectral (QS) kernel

KQS
1 (x) =

(
25/

(
12π2x2

)) [sin (6πx/5)
6πx/5 − cos (6πx/5)

]
,

and for K2 a quadratic-type kernel [cf. Epanechnikov (1969)] given by K2 (x) = 6x (1 − x) , 0 ≤
x ≤ 1. These kernels are optimal under an MSE criterion [see Casini (2023b)].

There has been some recent works on LRV estimation in statistics that relate to ours. Kawka

(2020) studied the asymptotic properties of classical spectral estimators for a linear time-varying

AR process where the AR coefficients can have a finite number of discontinuities. Since classical

spectral estimators do not involve any local smoothing over time, and since he focused on linear

processes and did not consider data-dependent bandwidths, his framework required simpler as-

sumptions. He also considered an estimate of the spectrum profile which is defined similarly to

the variance profile of Cavaliere and Taylor (2007). That is based on a recursive estimate of the

spectral density which is, however, different from applying local smoothing. The local smoothing

is important to better account for nonstationarity as shown in Casini, Deng and Perron (2023).

Potiron and Mykland (2020) showed that in the context of estimation of higher powers of volatility

for high frequency data the local smoothing can lead to substantial efficiency gains. Although

our setting is complicated by serial dependence and the fact that the class of estimators has a

slower rate of convergence than the parametric
√

T -rate, the theoretical results on the power of

the HAR tests below suggest that the local smoothing yields more powerful tests. In addition,

Casini et al. (2023) showed that under nonstationarity the sample autocovariance can be upward

biased asymptotically relative to the integrated local sample autocovariance, both for fixed lag k

and for k → ∞. An alternative way to deal with a time-varying mean has been considered by Chan

(2022a, 2022b) who proposed a LRV estimator which uses difference-based statistics that combine

local smoothing and lagged differences of the series. His results confirmed that the local smoothing

is important to enhance efficiency. However, he required covariance stationarity and did not study

the theoretical properties of HAR tests normalized by the proposed LRV estimator.

2.2 Data-Dependent Bandwidths

For data-dependent bandwidths, we use plug-in estimates of the optimal value that minimizes

some MSE criterion, see Section 4 and Casini (2023b). Let ΓD,u (k) = Cov(V ∗
D,T u, V ∗

D,T u−k) and

Cpp = ∑p
j=1

∑p
l=1 ιjι

′
l ⊗ ιlι

′
j, where ιi is the i-th elementary p-vector. The notation W and W̃ are

9
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used for some p2 × p2 weight matrices. Let F (K2) ≜
� 1

0 K2
2 (x) dx, H (K2) ≜ (

� 1
0 x2K2 (x) dx)2,

D1 (u) ≜ vec
(
∂2c∗

D (u, k) /∂u2
)′

W̃ vec
(
∂2c∗

D (u, k) /∂u2
)

,

D2 (u) ≜ tr[W̃ (Ip2 + Cpp)
∞∑

l=−∞
c∗

D (u, l) ⊗ [2c∗
D (u, l)]],

where c∗
D (u, l) = Cov(V ∗

D,T u, V ∗
D,T u−l), V ∗

D,t = DtV
∗

t ,

V ∗
t = Vt −

pA∑
j=1

Ar,jVt−j for t = rnT + 1, . . . , (r + 1) nT ,

Dt = (Ip −
pA∑
j=1

AD,t,j)−1, AD,t,j = Ar,j for t = rnT + 1, . . . , (r + 1) nT .

The optimal b2,T is given by [see Casini (2023b)]

bopt,∗
2,T (u) = [H (K2) D1 (u)]−1/5 (F (K2) (D2 (u)))1/5 T −1/5.

Let

K1,q ≜ lim
x↓0

(1 − K1 (x)) / |x|q for q ∈ [0, ∞); (2.4)

K1,q < ∞ if and only if K1 (x) is q times differentiable at zero. Let f ∗
D (u, ω) = ∑∞

k=−∞ c∗
D (u, k) e−iωk

and define the index of smoothness of f ∗
D (u, ω) at ω = 0 by f

∗(q)
D (u, 0) ≜ (2π)−1∑∞

k=−∞ |k|q c∗
D (u, k).

Let

ϕD (q) =
vec

(� 1
0 f

∗(q)
D (u, 0) du

)′
Wvec

(� 1
0 f

∗(q)
D (u, 0) du

)
tr
[
W (Ip2 + Cpp)

(� 1
0 f ∗

D (u, 0) du
)

⊗
(� 1

0 f ∗
D (v, 0) dv

)] .
The optimal b1,T given the optimal value bopt,∗

2,T is given by [see Casini (2023b)],

bopt,∗
1,T = (2qK2

1,qϕD (q) Tb
opt
2,T /

(
∫ K2

1 (y) dy ∫ K2
2 (x) dx

)
)−1/(2q+1),

with b
opt,∗
2,T =

� 1
0 bopt,∗

2,T (u) du. For the QS kernel, q = 2, K1,2 = 1.421223, and
�

K2
1 (x) dx = 1. For

the optimal K2 we have H(Kopt
2 ) = 0.09 and F (Kopt

2 ) = 1.2.
The bandwidths (bopt,∗

1,T , b
opt,∗
2,T ) are optimal under a sequential MSE criterion that determines

the optimal b1 as a function of the optimal b2 (u). Thus, the latter influences the former but not

10
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vice-versa. However, this has the advantage that the optimal b2 (u) is allowed to change over time.

Belotti et al. (2023) proposed an alternative criterion that determines the optimal b1 and b2 that

jointly minimize the global MSE. The latter yields an optimal b2 that does not depend on u and

so it does not perform as well as the sequential method when the data is far from stationary.

In order to construct a data-dependent bandwidth for b2,T (u), we need consistent estimators

of D1,D (u) and D2,D (u). We set W̃ (r,r) = p−1 for all r which corresponds to the normalization

used below for W . The estimator of D1,D (u) is then,

D̂1,D (u) ≜ [Sω]−1 ∑
s∈Sω

[
(3/π) (1 + 0.8 (cos 1.5 + cos 4πu) exp (−iωs))−4 (0.8 (−4π sin (4πu))) exp (−iωs)

−π−1 |1 + 0.8 (cos 1.5 + cos 4πu) exp (−iωs)|−3
(
0.8

(
−16π2 cos (4πu)

))
exp (−iωs)

]
,

where [Sω] is the cardinality of Sω and ωs+1 > ωs with ω1 = −π, ω[Sω ] = π. We set Sω =
{−π, −3, −2, −1, 0, 1, 2, 3, π}. The estimator of D2,D (u) is given by

D̂2,D (u0) ≜ 2p−1
p∑

r=1

⌊T 4/25⌋∑
l=−⌊T 4/25⌋

(
ĉ

∗,(r,r)
D,T (u0, l)

)2
,

where the number of summands grows at the same rate as the inverse of the optimal bandwidth

bopt,∗
1,T . Hence, the estimator of the optimal bandwidth bopt,∗

2,T is given by

b̂
∗
2,T = (nT /T )

⌊T/nT ⌋−1∑
r=1

b̂∗
2,T (ur) , (2.5)

where b̂∗
2,T (ur) = 1.7781(D̂1,D (ur))−1/5(D̂2,D (ur))1/5T −1/5, ur = rnT /T. (2.6)

The data-dependent bandwidth parameter b̂∗
1,T is then defined as follows. First, one specifies

p univariate approximating parametric models given by {V
∗(r)

D,t } for r = 1, . . . , p. Second, one

estimates the parameters of the approximating parametric model by least-squares. Third, one

substitutes these estimates into ϕD (q) with the estimate denoted by ϕ̂D (q). This yields the data-

dependent bandwidth parameter

b̂∗
1,T =

[
2qK2

1,qϕ̂D (q) T b̂
∗
2,T /

(�
K2

1 (x) dx ∫ K2
2 (x) dx

)]
−1/(2q+1). (2.7)

For the QS kernel, we have b̂∗
1,T = 0.6828(ϕ̂D (2) T b̂

∗
2,T )−1/5. The suggested approximating para-

11
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metric models are locally stationary first order autoregressive (AR(l)) models given by V
∗(r)

D,t =
a

(r)
1 (t/T ) V

∗(r)
D,t−1 + u

(r)
t , r = 1, . . . , p. Let â

(r)
1 (u) and (σ̂(r) (u))2 be the least-squares estimators of

the autoregressive and innovation variance parameters computed using data close to u = t/T :

â
(r)
1 (u) =

∑t
j=t−n2,T +1 V̂

∗,(r)
D,j V̂

∗,(r)
D,j−1∑t

j=t−n2,T +1

(
V̂

∗,(r)
D,j−1

)2 , σ̂(r) (u) =
 t∑

j=t−n2,T +1

(
V̂

∗,(r)
D,j − â

(r)
1 (u) V̂

∗,(r)
D,j−1

)2
1/2

,

where n2,T → ∞.11 These are simply least-squares estimators based on rolling windows. Then, for

q = 2, we have

ϕ̂D (2) =
p∑

r=1
W (r,r)

18

n3,T

T

⌊T/n3,T ⌋−1∑
j=0

(
σ̂(r) ((jn3,T + 1) /T ) â

(r)
1 ((jn3,T + 1) /T )

)2

(
1 − â

(r)
1 ((jn3,T + 1) /T )

)4


2 /

p∑
r=1

W (r,r)

n3,T

T

⌊T/n3,T ⌋−1∑
j=0

(
σ̂(r) ((jn3,T + 1) /T )

)2

(
1 − â

(r)
1 ((jn3,T + 1) /T )

)2


2

,

where W (r,r), r = 1, . . . , p are pre-specified weights and n3,T → ∞. The usual choice for W (r,r) is

one for all r except that which corresponds to an intercept in which case it is zero.

3 Large-Sample Results When E (Vt) = 0

In this section, we analyze the asymptotic properties of Ĵpw,T for the case with E (Vt) = 0 for all t,

which is relevant under the null hypothesis provided that the model is correctly specified. Let

K3 =
{

K1 (·) : R → [−1, 1] , (i) K1 (0) = 1, K1 (x) = K1 (−x) ,

� ∞

−∞
|K1 (x)| dx

� ∞

−∞
K2

1 (x) dx < ∞

(ii) |K1 (x)| ≤ C1 |x|−b with b > max (1 + 1/q, 4) for |x| ∈ [xL, DT hT xU ] ,

T −1/2hT → ∞, DT > 0, xL, xU ∈ R, 1 ≤ xL < xU , and with b > 1 + 1/q

for |x| /∈ [xL, DT hT xU ] and some C1 < ∞, where q ∈ (0, ∞) is such that K1,q ∈ (0, ∞) ,

(iii) |K1 (x) − K1 (y)| ≤ C2 |x − y| ∀x, y ∈ R for some costant C2 < ∞, and (iv) q < 34/4
}

.

11See, for example, Dahlhaus and Giraitis (1998) for a discussion about nonparametric local parameter estimates
in the context of locally stationary time series.

12



prewhitened lrv estimation robust to nonstationarity

K3 contains commonly used kernels, e.g., QS, Bartlett, Parzen, and Tukey-Hanning, with the

exception of the truncated kernel. For the QS, Parzen, and Tukey-Hanning kernels, q = 2. For

the Bartlett kernel, q = 1.12 The condition q < 34/4 in part (iv) is a technical condition needed

to control the deviation |b̂∗
1,T − bθ1,T |, where bθ1,T is defined similarly to b̂∗

1,T [cf. (3.1) below] but

with ϕ̂D (q) replaced by some ϕθ∗ such that ϕθ∗
P→ ϕ̂D (q) (see Assumption 3.5 below).

We consider the same class of kernels K2 as considered by Casini (2023b):

K2 =
{

K2 (·) : R → [0, ∞] : K2 (x) = K2 (1 − x) ,

�
K2 (x) dx = 1,

� 1

0
K2 (x) dx < ∞, K2 (x) = 0, for x /∈ [0, 1]

|K2 (x) − K2 (y)| ≤ C4 |x − y| for all x , y ∈ R and some constant C4 < ∞
}

.

We define

MSE(Tb1,T b2,T , J̃T , JT , W ) = Tb1,T b2,TE[vec(J̃T − JT )′Wvec(J̃T − JT )].

We need to impose conditions on the temporal dependence of {Vt}. Let

κ
(a1,a2,a3,a4)
V,t (u, v, w) ≜ κ(a1,a2,a3,a4) (t, t + u, t + v, t + w) − κ

(a1,a2,a3,a4)
N (t, t + u, t + v, t + w)

≜ E(V (a1)
t V

(a2)
t+u V

(a3)
t+v V

(a4)
t+w ) − EV

(a1)
N ,t V

(a2)
N ,t+uV

(a3)
N ,t+vV

(a4)
N ,t+w,

where {VN ,t} is a Gaussian sequence with the same mean and covariance structure as {Vt}.
κ

(a1,a2,a3,a4)
V,t (u, v, w) is the time-t fourth-order cumulant of (V (a1)

t , V
(a2)

t+u , V
(a3)

t+v , V
(a4)

t+w ) while κ
(a1,a2,a3,a4)
N

(t, t + u, t + v, t + w) is the time-t centered fourth moment of Vt if Vt were Gaussian. Let λmax (A)
denote the largest eigenvalue of the matrix A.

Assumption 3.1. (i)
∑∞

k=−∞ supu∈[0, 1] ∥c (u, k)∥ < ∞ and
∑∞

k=−∞
∑∞

j=−∞
∑∞

l=−∞ supu |κ(a1,a2,a3,a4)
V,⌊T u⌋

(k, j, l) | < ∞ for all a1, a2, a3, a4 ≤ p. (ii) For all a1, a2, a3, a4 ≤ p there exists a function

κ̃a1,a2,a3,a4 : [0, 1] × Z × Z × Z → R that is piecewise continuous in the first argument such that

supu∈[0, 1] |κ(a1,a2,a3,a4)
V,⌊T u⌋ (k, s, l) − κ̃a1,a2,a3,a4 (u, k, s, l) | ≤ KT −1 for some K < ∞; κ̃a1,a2,a3,a4(u, k,

s, l) is twice differentiable in u at all continuity points with bounded derivatives (∂/∂u) κ̃a1,a2,a3,a4

(u, ·, ·, ·) and (∂2/∂u2) κ̃a1,a2,a3,a4 (u, ·, ·, ·), and twice left-differentiable in u at all discontinuity

points with bounded derivatives (∂/∂−u) κ̃a1,a2,a3,a4 (u, ·, ·, ·) and (∂2/∂−u2)κ̃a1,a2,a3,a4 (u, ·, ·, ·), and
12Recall that K1,q is defined in (2.4).

13
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piecewise Lipschitz continuous derivative (∂2/∂−u2) κ̃a1,a2,a3,a4 (u, ·, ·, ·).

If {Vt,T } is stationary then the cumulant condition of Assumption 3.1-(i) reduces to the

standard one used in the time series literature [see, e.g., Assumption A in Andrews (1991)]. We

do not require fourth-order stationarity but only that the time-t = Tu fourth order cumulant is

locally constant in a neighborhood of a continuity point u. As explained in Casini (2023b), using

an argument similar to that used in Lemma 1 in Andrews (1991), one can show that α-mixing

and moment conditions imply that the cumulant condition of Assumption 3.1-(i) holds. Part (ii)

essentially requires that the approximating cumulant function κ̃a1,a2,a3,a4(u, k, s, l) satisfies similar

smoothness restrictions as f (u, ·) (i.e., twice differentiability at the continuity points and twice

left-differentiable at the discontinuity points).

Assumption 3.2. (i)
√

T (β̂ − β0) = OP (1); (ii) supu∈[0, 1] E||V⌊T u⌋||2 < ∞; (iii) supu∈[0, 1] E supβ∈Θ

|| (∂/∂β′) V⌊T u⌋ (β) ||2 < ∞.

Assumption 3.2-(i,iii) is an extension of Assumption B in Andrews (1991) to a nonstationary

setting. Part (i) follows from asymptotic normality of
√

T (β̂ − β0). Part (ii)-(iii) are common

conditions used to obtain the asymptotic normality of
√

T (β̂ − β0) under nonstationarity. In order

to obtain rate of convergence results we shall replace Assumption 3.1 with the following assumption.

Assumption 3.3. (i) Assumption 3.1-(i) holds with Vt replaced by

(
V ′

⌊T u⌋, vec
((

∂

∂β′ V⌊T u⌋ (β0)
)

− E
(

∂

∂β′ V⌊T u⌋ (β0)
))′)′

.

(ii) supu∈[0, 1] E(supβ∈Θ || (∂2/∂β∂β′) V
(r)

⌊T u⌋ (β) ||)2 < ∞ for all r = 1, . . . , p.

Assumption 3.4. Let WT denote a p2 × p2 weight matrix such that WT
P→ W .

Assumption 3.5. (i) ϕ̂D (q) = OP (1) and 1/ϕ̂D (q) = OP (1); (ii) inf{T/n3,T ,
√

n2,T }(ϕ̂D (q) −
ϕθ∗) = OP (1) for some ϕθ∗ ∈ (0, ∞) where n2,T /T + n3,T /T → 0, n

5/4
2,T /T → [c2, ∞), n

10/6
3,T /T →

[c3, ∞) with 0 < c2, c3 < ∞; (iii) supu∈[0, 1] λmax(Γ∗
D,u (k)) ≤ C3k

−l for all k ≥ 0 for some C3 < ∞
and some l > max{2, (4q + 2) / (2 + q) , (11 + 6q) / (11 + 4q) , (23 + 34q) / (23 + 10q)}, where q

is as in K3; (iv) uniformly in u ∈ [0, 1], D̂1 (u) , D̂2 (u), 1/D̂1 (u) and 1/D̂2 (u) are OP (1);
(v) ωs+1 − ωs → 0, [Sω]−1 → ∞ at rate O (T −1) and O (T ) , respectively; (vi)

√
Tb2,T (u)(D̂2 (u)

−D2 (u)) = OP (1) for all u ∈ [0, 1].

14
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Assumption 3.3 is needed to show that the effect of using β̂ rather than β0 when constructing

Ĵpw,T is at most oP (1); it is an extension of Assumption C in Andrews (1991). Parts (i)-(ii) of

Assumption 3.5 are the nonparametric analogue to Assumption E-F in Andrews (1991). Part (iii)

is satisfied if {Vt} is strong mixing with mixing numbers that are less stringent than those sufficient

for the cumulant condition in Assumption 3.1-(i). Part (iv) and (vi) extend (i)-(ii) to D̂1 and D̂2.

Part (v) is needed to apply the convergence of Riemann sums. Under Assumption 3.5 the effect

of using the bandwidths b̂∗
1,T and b̂∗

2,T rather than bθ1,T and bθ2,T (defined below in (3.1)) when

constructing Ĵpw,T is at most oP (1).

Assumption 3.6.
√

nT (Âr,j − Ar,j) = OP (1) for some Ar,j ∈ Rp×p for all j = 1, . . . , pA and all

r = 0, . . . , ⌊T/nT ⌋.

Given the restrictions below on nT , Assumption 3.6 is satisfied by standard nonparametric

estimators. For the consistency of ĴT,pw, Assumption 2.1, 3.1-3.2, 3.5-(i,iv) and 3.6 are sufficient.

For the rate of convergence and asymptotic MSE results additional conditions are needed. Let

bθ1,T =
(

2qK2
1,qϕθ∗Tbθ2,T /

(�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

))−1/(2q+1)

, (3.1)

where bθ2,T ≜
� 1

0 [H (K2) D1 (u)]−1/5 (F (K2) D2 (u))1/5 T −1/5du. Recall that the bandwidths b̂
∗
2,T ,

b̂∗
2,T and b̂∗

1,T are defined by (2.5), (2.6) and (2.7), respectively.

Theorem 3.1. Suppose K1 (·) ∈ K3, q is as in K3, K2 (·) ∈ K2, ||
� 1

0 f
∗(q)
D (u, 0) || < ∞. Then, we

have:

(i) If Assumption 2.1, 3.1-3.2, 3.5-(i,iv) and 3.6 hold,
√

nT b̂∗
1,T → ∞, and q > 1/2, then

ĴT,pw(b̂∗
1,T , b̂∗

2,T ) − JT
P→ 0.

(ii) If Assumption 2.1, 3.1-(ii), 3.2-3.3, 3.5-(ii,iii,v,vi) and 3.6 hold, and nT /(T b̂∗
1,T ) → 0,

nT /(T (b̂∗
1,T )q) → 0, T b̂

∗
2,T /(n2

T b̂∗
1,T ) → 0, T b̂

∗
2,T b̂∗

1,T /nT → 0, then
√

Tbθ1,T bθ2,T (Ĵpw,T (b̂∗
1,T , b̂

∗
2,T ) −

JT ) = OP (1).
(iii) Let γK,q = 2qK2

1,qϕθ∗/(
�

K2
1 (y) dy

� 1
0 K2

2 (x) dx). If Assumption 3.2-3.4 and 3.5-(ii,iii,v,vi)
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hold, then

lim
T →∞

MSE(T 8q/5(2q+1), Ĵpw,T (b̂∗
1,T , b̂

∗
2,T ), JT , WT )

= 4π2
[
γK,qK

2
1,qvec

(� 1

0
f

∗(q)
D (u, 0) du

)′

Wvec
(� 1

0
f

∗(q)
D (u, 0) du

)]

+
�

K2
1 (y) dy

�
K2

2 (x) dx tr
[
W (Ip2 − Cpp)

(� 1

0
f ∗

D (u, 0) du

)
⊗
(� 1

0
f ∗

D (u, 0) du

)]
.

A result corresponding to Theorem 3.1 for non-prewhitened DK-HAC estimators is established

in Theorem 5.1 in Casini (2023b) under the same assumptions with the exception of Assumption

3.6. Note that for u a continuity point, f ∗
D (u, ω) = D (u, ω) f ∗ (u, ω) D (u, ω)′ , where D (u, ω) =

(Ip − ∑pA
j=1 AD,j (u) e−ijω)−1 with AD,j (u) = AD,T u,j + O (T −1) and f ∗ (u, ω) is the local spectral

density of {V ∗
t }. Since D (u − k/T, ω) = D (u, ω) + O (T −1) by local stationarity, we have

f
∗(q)
D (u, 0) = (−)q/2 dq

dωq

[
D (u, ω)−1 f (u, ω)

(
D (u, ω)′

)−1
]

|ω=0 + O
(
T −1

)
, q even.

A meaningful comparison between prewhitened and non-prewhitened DK-HAC estimators ĴT can

be made only if reasonable choices of the bandwdiths b1,T and b2,T are made. When the optimal

bandwidths for Ĵpw,T and ĴT are used we find that ĴT,pw has smaller asymptotic MSE than ĴT if

and only if (assuming p = 1, i.e., the scalar case, with w1,1 = 1)

� 1

0
f

∗(q)
D (u, 0) du︸ ︷︷ ︸

squared bias

(� 1

0
f ∗

D (u, 0) du

)2q

︸ ︷︷ ︸
variance

<

� 1

0
f (q) (u, 0) du︸ ︷︷ ︸
squared bias

(� 1

0
f (u, 0) du

)2q

︸ ︷︷ ︸
variance

. (3.2)

A numerical comparison would be tedious since the condition depends on the true data-generating

process of {Vt} and the VAR approximation for V̂t = Vt(β̂). Under stationarity, Grenander and

Rosenblatt (1957) and Andrews and Monahan (1992) considered a few examples. We can make a

few observations on the difference between the condition (3.2) and an analogous condition for the

case with {Vt} second-order stationary and Ds = D = (1 −∑pA
j=1 Aj)−1 for all s [cf. Andrews and

Monahan (1992)]. The condition in Andrews and Monahan (1992) is then

|f ∗(q) (0) |D2 < |f q (0) |, (3.3)

where the quantities f q (0) and f ∗(q) (0) do not depend on u by stationarity. The main difference
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between the two conditions (3.2)-(3.3) is that the part involving the asymptotic variance is missing

in (3.3). The quantities |f ∗(q) (0) |D2 and |f q (0) | are from the asymptotic squared bias. This is

a consequence of the fact that prewhitened and non-prewhitened HAC estimators have the same

asymptotic variance under stationarity when the optimal bandwidths are used. This property

does not hold when {Vt} is nonstationary. The condition (3.2) suggests instead that, in general,

both the asymptotic squared bias and asymptotic variance of prewhitened and non-prewhitened

HAC estimators can be different. Simulations in Andrews and Monahan (1992) showed that this is

indeed the case even under stationarity: the variance of the prewhitened HAC estimators is larger

than that of the non-prewhitened HAC estimators—this feature is consistent with our theoretical

results but not with theirs.

Both the smoothing over lagged autocovariances and over time influence the bias of Ĵpw,T .

The contribution to the bias due to smoothing over lagged autocovariances is O(bq
1,T ) while the

contribution due to smoothing over time is O(b2
2,T ). Note that the continuity points and the

discontinuity points here induce a bias of the same order b2
2,T . For the continuity points, O(b2

2,T )
follows from the usual argument. In the neighborhood of a discontinuity point [λ0

j −b2,T , λ0
j +b2,T ],

the bias of the local smoothing is O(b2,T ). However, when averaging over blocks or equivalently

integrating over u ∈ [0, 1], this bias becomes O(b2
2,T ) since there are only a finite number of

discontinuity points and so each discontinuity point contributes O(b2
2,T ) to the integrated bias.

For Ĵpw,T we have (̂b
∗
2,T )2/(b̂∗

1,T )q → 0 since q = 2. Thus, the bias due to smoothing over lagged

autocovariances dominates the bias due to smoothing over time.

4 Extension to General Nonstationary Random Variables

In this section we discuss the case where {Vt} is unconditionally heteroskedastic and establish

new MSE bounds which we compare to existing ones. To focus on the main intuition and for

comparison purposes, we consider the non-prewhitened DK-HAC estimator

ĴT (b1,T , b2,T ) =
T −1∑

k=−T +1
K1(b1,T k)Γ̂ (k) ,

where Γ̂ (k) is defined analogously to Γ̂∗
D (k) but with V̂t in place of V̂ ∗

D,t. We use the new MSE

bounds to show that the data-dependent bandwidths for the DK-HAC estimator are minimax MSE-

optimal also under general nonstationarity. Corresponding results for the prewhitened estimator

Ĵpw,T can be obtained by using the results of Section 3, though the proofs are more lengthy with
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no special gain in intuition.

We provide theoretical results under the assumption that {Vt} is generated by some distribu-

tion P. EP denotes the expectation taken under P. We establish lower and upper bounds on the

MSE under P and use a minimax MSE criterion for optimality. Define the sample size dependent

spectral density of {Vt} as

fP,T (ω) ≜ (2π)−1
T −1∑

k=−T +1
ΓP,T (k) exp (−iωk) , for ω ∈ [−π, π] ,

where

ΓP,T (k) =

T −1∑T
t=k+1 EP(VtV

′
t−k), for k ≥ 0

T −1∑T
t=−k+1 EP(Vt+kV ′

t ), for k < 0
.

The estimand is then given by

JP,T ≜
T −1∑

k=−T +1
ΓP,T (k) . (4.1)

The theoretical bounds are derived in terms of two distributions Pw, w = L, U , under which

{Vt} is zero-mean SLS with m0+1 regimes and satisfies Assumption 2.1 and 3.1 with autocovariance

function {ΓPw,t/T (k)}. Then, {a′Vt} has spectral density fPw,a (ω) ≜
� 1

0 fPw,a (u, ω) du, where

fPw,a (u, ω) ≜ (2π)−1
∞∑

k=∞
a′ΓPw,u (k) a exp (−iωk) , for all a ∈ Rp.

Let κP,aV,t (k, j, m) denote the time-t fourth-order cumulant of (a′Vt, a′Vt+k, a′Vt+j, a′Vt+m) under
P. Define

P U ≜

{
P : −ΓPU ,t/T (k) ≤ ΓP,t/T (k) ≤ ΓPU ,t/T (k) , and |κP,aV,t (k, j, m)| ≤ |κ∗

t (k, j, m)|

∀t ≥ 1, k, j, m ≥ −t + 1, a ∈ Rp that satisfies
∞∑

k=−∞

∞∑
j=−∞

∞∑
m=−∞

sup
t

κ∗
t (k, j, m) < ∞

}
,
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and P L ≜

{
P : 0 ≤ ΓPL,t/T (k) ≤ ΓP,t/T (k) , ∀t ≥ 1, k ≥ −t + 1 and κP,aV,t (k, j, m)

satisfies the same condition as in P U

}
.

To derive the MSE bounds for a given class of general nonstationary processes one needs to impose

restrictions on the autocovariance function of the processes in the class relative to the autocovari-

ance function of some process whose second-order properties are known. This approach was also

used by Andrews (1991) who, however, relied on stationarity. P U includes all distributions such

that the autocovariances of {Vt} are bounded above by those of some SLS process with distri-

bution PU , thereby allowing considerable variability of ΓP,t/T (k) for given t and k. The set P L

requires the autocovariances of {Vt} to be bounded below by positive semidefinite autocovariances

of some SLS process with distribution PL. Let cPw (u, k) =
�

eiωkΓPw,u (k) dω denote the local

autocovariance associated to the distribution Pw, w = L, U. Let

K1 =
{

K1 (·) : R → [−1, 1] : K1 (0) = 1, K1 (x) = K1 (−x) , ∀x ∈ R
� ∞

−∞
K2

1 (x) dx < ∞, K1 (·) is continuous at 0 and at all but finite number of points
}

.

Note that K3 ⊂ K1. In particular, K1 includes also the truncated kernel.

4.1 Consistency, Rate of Convergence and MSE Bounds

Consider the following generalization of Assumption 2.1 and 3.1:

Assumption 4.1. {Vt} is a mean-zero sequence and satisfies
∑∞

k=0 supt≥1 ||EP(VtV
′

t+k)|| < ∞ and

for all a1, a2, a3, a4 ≤ p,
∑∞

k=1
∑∞

j=1
∑∞

m=1 supt≥1 |κ(a1, a2, a3, a4)
P,V,t (k, j, m) | < ∞.

Let MSEP (·) denote the MSE of · under P and let K1,+ = {K1 (·) ∈ K1 : K1 (x) ≥ 0 ∀x}.
K1,+ is a subset of K1 that contains all kernels that are non-negative and is used for some results

below. The QS kernel is not in K1,+. The smoothness of fPw,a (u, ω) at ω = 0 is indexed by

f
(q)
Pw,a (u, 0) = (2π)−1

∞∑
k=−∞

|k|q a′ΓPw,u (k) a, for q ∈ [0, ∞), w = L, U.

We first consider the MSE bounds for J̃T which is constructed using Vt(β0) rather than V̂t.
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Theorem 4.1. Suppose Assumption 4.1 holds, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT /T → 0
and 1/(Tb1,T b2,T ) → 0. If nT /(Tbq

1,T ) → 0, b2
2,T /bq

1,T → 0 and Tb2q+1
1,T b2,T → γ ∈ (0, ∞) for some

q ∈ [0, ∞) for which K1,q, |
� 1

0 f
(q)
Pw,a (u, 0) du| ∈ [0, ∞), w = L, U , a ∈ Rp, then we have:

(i) for all K1 (·) ∈ K1,

lim
T →∞

Tb1,T b2,T sup
P∈P U

MSEP

(
a′J̃T a

)
= 4π2

γK2
1,q

(� 1

0
f

(q)
PU ,a (u, 0) du

)2

+2
�

K2
1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPU ,a (u, 0) du

)2 .

(ii) for all K1 (·) ∈ K1,+,

lim
T →∞

Tb1,T b2,T inf
P∈P L

MSEP

(
a′J̃T a

)
= 4π2

γK2
1,q

(� 1

0
f

(q)
PL,a (u, 0) du

)2

+2
�

K2
1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPL,a (u, 0) du

)2 .

The theoretical bounds in Theorem 4.1 are sharper than the ones in Andrews (1988; 1991)

which are based on stationarity (i.e., the autocovariances that dominate the autocovariances of

any P ∈ P U are assumed by Andrews (1991) to be those of a stationary process).13 Given that

stationarity is a special case of SLS, our bounds apply to a wider class of processes. Furthermore,

they are more informative because they change with the specific type of nonstationarity unlike

Andrews’ (1991) bounds that depend on the spectral density of a stationary process.

The theorem is derived under b2
2,T /bq

1,T → 0 (i.e., the bias due to smoothing over time is of

smaller order than that due to smoothing over lagged autocovariances). When instead b2
2,T /bq

1,T →
ν ∈ (0, ∞), there is an additional term in the bound. For example, in part (i) this term is

πν

� 1

0
x2K2 (x) dx

�
C̃PU

(
∂2/∂u2

)
fPU ,a (u, 0) du + 2πν∆fPU ,a

(0)
2

+ Ξ,

13There are a couple of technical issues in Section 8 in Andrews (1991). In particular, the MSE bound is not
correct. See Casini (2022) for details.
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where C̃PU
is the set of continuity points under PU ,

∆fPU ,a
(ω) =

m0∑
j=1

� 1

0

(
∂

∂u−
fPU ,a

(
λ0

j , ω
)� 1−s

0
xK2 (x) dx + ∂

∂u+
fPU ,a

(
λ0

j , ω
) � 1

1−s

xK2 (x) dx

)
ds,

with
{
λ0

j

}m0

j=1
being the discontinuity points, m0 being a finite integer,

∂

∂u−
fPU ,a

(
λ0

j , ω
)

= lim
h↑0

fPU ,a

(
λ0

j + h, ω
)

− fPU ,a

(
λ0

j , ω
)

h
,

∂

∂u+
fPU ,a

(
λ0

j , ω
)

= lim
h↓0

fPU ,a

(
λ0

j + h, ω
)

− fPU ,a

(
λ0

j , ω
)

h
,

and Ξ depends on the cross-products of the bias terms due to smoothing over time and lagged

autocovariances. Some of the results of this paper are extended to the case b2
2,T /bq

1,T → ν ∈ (0, ∞)
in Belotti et al. (2021). Thus, our bounds show how nonstationarity influences the bias-variance

trade-off. They also highlight how it is affected by the smoothing over the time direction versus the

autocovariance lags direction. These are important elements in order to understand the properties

of HAR tests normalized by LRV estimators.

We now extend the results in Theorem 4.1 to the estimator ĴT that uses Vt(β̂). The following
assumptions extend Assumption 3.2-3.3 to the distribution P.

Assumption 4.2. Assumption 3.2 holds with E replaced by EP .

Assumption 4.3. (i) Assumption 4.1 holds with Vt replaced by (V ′
⌊T u⌋, vec(((∂/∂β′)V⌊T u⌋(β0))− EP(

(∂/∂β′) V⌊T u⌋(β0))′)′; (ii) supu∈[0, 1] EP(supβ∈Θ ||(∂2/∂β∂β′)V (ar)
⌊T u⌋ (β) ||2) < ∞ (r = 1, . . . , p).

To show the asymptotic equivalence of the MSE of a′ĴT a to that of a′J̃T a we need an additional

assumption which was also used by Andrews (1991). Define

H1,T ≜ b1,T

T −1∑
k=−T +1

∣∣∣∣∣K1 (b1,T k)
∣∣∣∣∣

×
∣∣∣∣∣nT

T

⌊T/nT ⌋∑
r=0

(Tb2,T )−1/2
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
∂

∂β
a′Vs (β0) a′V s−k (β0)

∣∣∣∣∣,
H2,T ≜ b1,T

T −1∑
k=−T +1

∣∣∣∣∣K1 (b1,T k)
∣∣∣∣∣sup
β∈Θ

∣∣∣∣∣nT

T

⌊T/nT ⌋∑
r=0

(Tb2,T )−1
T∑

s=k+1

× K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
∂2

∂β∂β′ a
′Vs (β) a′V s−k (β)

∣∣∣∣∣.
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Let H
(r)
1,T , β̂(r) and β

(r)
0 denote the r-th elements of H1,T , β̂ and β0, respectively, for r = 1, . . . , p.

Assumption 4.4. For all r = 1, . . . , p, lim supT →∞ supP∈P U
EP(H(r)

1,T

√
T (β̂(r) − β

(r)
0 ))2 < ∞ and

lim supT →∞ supP∈P U
EP(

√
T (β̂ − β0)′H2,T

√
T (β̂ − β0))2 < ∞.

Theorem 4.2. Suppose K1 (·) ∈ K1, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT /T → 0 and

1/Tb1,T b2,T → 0. We have:

(i) If Assumption 4.1-4.2 hold,
√

Tb1,T → ∞, then ĴT − JP,T
P→ 0 and ĴT − J̃T

P→ 0 where

JP,T is defined in (4.1).

(ii) If Assumption 4.1-4.3 hold, nT /(Tb1,T ) → 0, nT /(Tbq
1,T ) → 0 and Tb2q+1

1,T b2,T → γ ∈
(0, ∞) for some q ∈ [0, ∞) for which K1,q, |

� 1
0 f

(q)
Pw,a (u, 0) du| ∈ [0, ∞), w = U, L, a ∈ Rp, then√

Tb1,T b2,T (ĴT − JP,T ) = OP (1) and
√

Tb1,T (ĴT − J̃T ) = oP (1) .

(iii) Under the assumptions of part (ii) and Assumption 4.4,

lim
T →∞

sup
P∈P U

Tb1,T b2,T |MSEP(a′ĴT a) − MSEP(a′J̃T a)| = 0

for all a ∈ Rp such that |
� 1

0 f
(q)
PU ,a (u, 0) du| < ∞.

Theorem 4.2 extends the consistency, rate of convergence, MSE results of Theorem 3.2 in

Casini (2023b). The asymptotic equivalence of the MSE implies that the bounds in Theorem

4.1 apply to ĴT as well. The MSE equivalence is used to show that the optimal kernels and

bandwidths results below apply to ĴT as well as to J̃T . Similar results can be shown for the

prewhitened estimator ĴT,pw. For this case, the sets P U and P L would need to be defined in

terms of the autocovariance function of V ∗
D,t = DtV

∗
t . The distributions PU and PL that form an

envelope for the autocovariances of V ∗
D,t may depend on different prewhitening models.

4.2 Optimal Bandwidths and Kernels

We use the sequential MSE procedure that first determines the optimal b2,T (u) and then determines

the optimal b1,T as function of the integrated optimal b2,T , see Casini (2023b). The results for the

global MSE criterion can easily be extended using similar arguments as those used in this section.

We consider distributions P ∈ P U,2 where P U,2 ⊆ P U is defined below. We need to restrict

attention to a subset P U,2 of P U for technical reasons related to the derivation of the optimal

bandwidth bopt
2,T (u). The distributions in P U,2 restrict the degree of nonstationarity by requiring

some smoothness of the local autocovariance. This is intuitive since the optimality of bopt
2,T (u) is

justified under smoothness locally in time. We remark, however, that the optimality of b1,T and
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K1 determined below holds over all distributions P ∈ P U . We show that the resulting optimal

kernels are Kopt
1 (·) and Kopt

2 (·) from Section 3.

Let C̃PU
denote the set of continuity points u ∈ (0, 1) under PU . For any a ∈ Rp and

u0 ∈ C̃PU
consider the following inequality,

∣∣∣∣∣a′
(

∂2

∂2u
cP (u0, k)

)
a

∣∣∣∣∣ ≤

∣∣∣∣∣∣a′
(

∂2

∂2u
cPU

(u0, k)
)

a

∣∣∣∣∣∣, (4.2)

which essentially requires that the distribution PU has locally a larger degree of nonstationarity

than that of the distribution P. We consider the following class of distributions,

P U,2 ≜ {P : P ∈ P U , m0 = 0, and (4.2) holds ∀k ∈ R and ∀u0 ∈ (0, 1)} .

Let

D1,U,a(u0) ≜
(

a′
(

∂2cPU
(u0, k)

∂u2

)
a

)2

,

D2,U,a(u0) ≜
∞∑

l=−∞
a′(cPU

(u0, l)[cPU
(u0, l) + cPU

(u0, l + 2k)]′)a.

Proposition 4.1. Suppose Assumption 4.1-4.4 hold and u0 ∈ C̃PU
. For any sequence of bandwidth

parameters {b2,T } such that b2,T → 0, we have

sup
P∈P U,2

MSEP (a′ĉT (u0, k) a) = sup
P∈P U,2

EP (a′ĉT (u0, k) a − a′cP (u0, k) a)2
(4.3)

≤ 1
4b4

2,T

(� 1

0
xK2 (x) dx

)2 (
∂2

∂2u
a′cPU

(u0, k) a

)2

+ 1
Tb2,T

� 1

0
K2

2 (x) dx
∞∑

l=−∞
a′
(
cPU

(u0, l) [cPU
(u0, l) + cPU

(u0, l + 2k)]′
)

a

+ 1
Tb2,T

� 1

0
K2

2 (x) dx
∞∑

h1=−∞

∞∑
h2=−∞

κPU ,aV,T u0 (h1, 0, h2) + o
(
b4

2,T

)
+ O (1/ (b2,T T )) ,

which is minimized for

bopt
2,T (u0) = [H

(
Kopt

2

)
D1,U,a (u0)]−1/5

(
F
(
Kopt

2

)
(D2,U,a (u0) + D3,U (u0))

)1/5
T −1/5,
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where

D3,U (u0) =
∞∑

h1=−∞

∞∑
h2=−∞

κPU ,aV,T u0 (h1, 0, h2) ,

and Kopt
2 (x) = 6x (1 − x) , 0 ≤ x ≤ 1. In addition, if {Vt} is Gaussian, then D3,U (u0) = 0 for all

u0 ∈ (0, 1).

We now obtain the optimal K1 (·) and b1,T as a function of b
opt
2,T =

� 1
0 bopt

2,T (u) du and Kopt
2 (·).

For some results below, we consider a subset of K1 defined by K̃1 = {K1 (·) ∈ K1| K̃ (ω) ≥
0 ∀ ω ∈ R} where K̃ (ω) = (2π)−1 � ∞

−∞ K1 (x) e−ixωdx. The function K̃ (ω) is referred to as the

spectral window generator corresponding to the kernel K1 (·). The set K̃1 contains all kernels K1

that generate positive semidefinite estimators in finite samples. K̃1 contains the Bartlett, Parzen,

and QS kernels, but not the truncated or Tukey-Hanning kernels.

We adopt the notation ĴT (b1,T ) = ĴT (b1,T , b2,T , K2,0) for the estimator ĴT that uses K2,0 (·) ∈
K2, b1,T and b2,T = b

opt
2,T + o(T −1/5) where b

opt
2,T =

� 1
0 bopt

2,T (u) du. Let ĴQS
T (b1,T ) denote the estimator

based on the QS kernel KQS
1 (·). We then compare two kernels K1 using comparable bandwidths

b1,T which are defined as follows. Given K1 (·) ∈ K̃1, the QS kernel KQS
1 (·), and a bandwidth

{b1,T } to be used with the QS kernel, define a comparable bandwidth {b1,T,K1} for use with K1 (·)
such that both kernel/bandwidth combinations have the same maximum asymptotic variance over

P ∈ P U when scaled by the same factor Tb1,T b2,T . This means that b1,T,K1 is such that

lim
T →∞

sup
P∈P U

Tb1,T b2,T MSEP(a′(ĴQS
T (b1,T ) − E(J̃QS

T (b1,T )) + JT )a)

= lim
T →∞

sup
P∈P U

Tb1,T b2,T MSEP(a′(ĴT (b1,T,K1) − E(J̃T (b1,T,K1)) + JT )a).

This definition yields b1,T,K1 = b1,T /(
�

K2
1 (x) dx). Note that for the QS kernel, KQS

1 (x), we have

b1,T,QS = b1,T since
�

(KQS
1 (x))2dx = 1.

Theorem 4.3. Suppose Assumption 4.1-4.4 hold,
� 1

0 |f (2)
U,a (u, 0) |du < ∞, and b2,T → 0, b5

2,T T →
η ∈ (0, ∞). For any bandwidth sequence {b1,T } such that b2,T /b1,T → 0, nT /Tb2

1,T → 0 and

Tb5
1,T b2,T → γ ∈ (0, ∞), and for any kernel K1 (·) ∈ K̃1 used to construct ĴT , the QS kernel is

preferred to K1 (·) in the sense that for all a ∈ Rp,

lim inf
T →∞

Tb1,T b2,T

(
sup

P∈P U

MSEP

(
a′ĴT (b1,T,K1) a

)
− sup

P∈P U

MSEP

(
a′ĴQS

T (b1,T ) a
))

= 4γπ2
(� 1

0
f

(2)
U,a (u, 0) du

)2 � 1

0
(K2,0 (x))2 dx ×

K2
1,2

(�
K2

1 (y) dy

)4

−
(
KQS

1,2

)2
 ≥ 0.
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The inequality is strict if K1 (x) ̸= KQS
1 (x) with positive Lebesgue measure.

We now consider the asymptotically optimal choice of b1,T for a given kernel K1 (·) for which

K1,q ∈ (0, ∞) for some q, and given Kopt
2 and b

opt
2,T . We continue to use a minimax optimality

criterion. However, unlike the results of Proposition 4.1 and Theorem 4.3, in which an optimal

kernel was found that was the same for any dominating distribution P U,2 and P U , respectively,

the optimal bandwidth b1,T depends on a scalar parameter ϕ (q) that is a function of PU and q.

Let wr, r = 1, . . . , p, be a set of non-negative weights summing to one. We consider a

weighted squared error loss function

L(ĴT , JP,T ) =
p∑

r=1
wr(Ĵ (r,r)

T (b1,T ) − J
(r,r)
P,T )2.

A common choice is wr = 1/p for r = 1, . . . , p. For a given dominating distribution PU , define

ϕ (q) =
p∑

r=1
wr

(� 1

0
f

(q)
U,a(r) (u, 0) du

)2

/
p∑

r=1
wr

(� 1

0
fU,a(r) (u, 0) du

)2

, (4.4)

where a(r) is a p-vector with the r-th element one and all other elements zero. For any given

ϕ (q) ∈ (0, ∞), let P U (ϕ) denote some set P U whose dominating distribution PU satisfies (4.4).

Theorem 4.4. Suppose Assumption 4.1-4.4 hold. For any given K1 (·) ∈ K1 such that 0 < K1,q <

∞ for some q ∈ (0, ∞), and any given sequence {b1,T } such that b2,T /b1,T → 0, Tb2q+1
1,T b2,T → γ ∈

(0, ∞), the bandwidth defined by

bopt
1,T =

(
2qK2

1,qϕ (q) Tb
opt
2,T /

(�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

))
−1/(2q+1),

is optimal in the sense that,

lim inf
T →∞

T 8q/5(2q+1)
(

sup
P∈P U (ϕ)

EPL
(
ĴT (b1,T ) , JP,T

)
− sup

P∈P U (ϕ)
EPL

(
ĴT

(
bopt

1,T

)
, JP,T

))
≥ 0,

provided fU,a(r) > 0 and f
(q)
U,a(r) > 0 for some r for which wr > 0. The inequality is strict unless

b1,T = bopt
1,T + o(T −4/5(2q+1)).
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4.3 Data-dependent DK-HAC Estimation

We now show that the DK-HAC estimators based on data-dependent bandwidths with similar form

as b̂∗
1,T and b̂

∗
2,T (cf. Section 2) have the same asymptotic MSE properties as the estimators based

on optimal fixed bandwidth sequences bopt
1,T and b

opt
2,T that depend on the unknown distribution P.

We consider the data-dependent bandwidths b̂1,T and b̂2,T from Casini (2023b) which are

defined as b̂∗
1,T and b̂

∗
2,T , repetitively, with V̂t in place of V̂ ∗

D,t. We choose a parametric model for

{a(r)′Vt}, r = 1, . . . , p, where a(r) is a p-vector with the r-th element one and all other elements

zero. We use the same locally stationary AR(1) models as in Section 3, i.e.,

V
(r)

t = a
(r)
1 (t/T ) V

(r)
t−1 + u

(r)
t ,

with estimated parameters â
(r)
1 (·) and σ̂(r) (·) . Let

θ̂ =
(� 1

0
â

(1)
1 (u) du,

� 1

0

(
σ̂(1) (u)

)
2du, . . . ,

� 1

0
â

(p)
1 (u) du,

� 1

0

(
σ̂(p) (u)

)
2du

)′

,

and θ∗
P denote the probability limit of θ̂. We only consider distributions P for which θ∗

P exists.

We construct ϕ̂ (q) = ϕ̂D (q) as in Section 2 but using the estimate θ̂. The probability limit of ϕ̂ (q)
is denoted by ϕθ∗ (q). Let ϕP (·) be the value of ϕ (·) from (4.4) obtained when PU is given by the

approximating distribution with parameter θ∗
P . For some ϕ, ϕ such that 0 < ϕ ≤ ϕ < ∞, define

P U,3 ≜

{
P ∈ P U : (i) θ̂

P→ θ∗
P for some θ∗

P ∈ Θ such that ϕP (q) ∈ [ϕ, ϕ] for any q,

(ii) sup
u∈[0, 1]

|a′ΓPU ,u (k) a| ≤ C3 |k|−l for k = 0, ±1, . . . , for some C3 < ∞,

for some l > max{2, (4q + 2) / (2 + q)}, for all a ∈ Rp with ||a|| = 1,

where q is as in K3 and satisfying 8/q − 20q < 6, and q < 11/2,

(iii) sup
k≥1

VarPU
(a′Γ̂ (k) a) = O(1/Tbopt

2,T ), and

(iv) lim sup
T →∞

EP

 1
SP,T

SP,T∑
k=1

√
Tbopt

2,T

∣∣∣a′Γ̂ (k) a − a′ΓP,T (k) a
∣∣∣
4

≤ C4

for some C4 < ∞ with SP,T =
⌊
(bopt

1,T )−r
⌋

some r ∈ S (q, b, l)
}

,
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where

S (q, b, l) = (max{(b − 3/4 − q/2)/ (b − 1) , q/ (l − 1) ,

min {(6 + 4q) /8, 15/16 + 3q/8}),

with b > 1 + 1/q. The class of distributions P U,3 corresponds to the class P1,1 used by Andrews

(1988). The lower bound 0 < ϕ ≤ ϕP (q) in part (i) eliminates any distribution for which ϕP (·) =
0. For example, white noise sequences do not belong to P U,3 since then ϕ (q) = 0. We discuss

these cases at the end of the section. Part (ii) imposes a condition on the temporal dependence

of the distribution PU and is similar to Assumption 3.5-(iii). Part (iii) is satisfied by a wide class

of SLS processes as shown by Casini (2023b). Part (iv) was also used by Andrews (1988), though

the interval S (q, b, l) is tighter as it takes into account of the time smoothing.

Let

b1,θP ,T =
(

2qK2
1,qϕθ∗

P
(q) Tb

opt
2,T /

(�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

))
−1/(2q+1),

denote the optimal bandwidth for the case in which PU equals the approximating parametric

model with parameter θ∗
P . Let

D̂2,a (u) ≜ 2
⌊T 4/25⌋∑

l=−⌊T 4/25⌋
a′ĉT (u0, l) ĉT (u0, l)′ a,

where ĉT is defined as ĉ∗
D,T with V̂t and b̂2,T in place of V̂ ∗

D,t and b̂∗
2,T , respectively,

ĉT (rnT /T, k) ≜


(
T b̂2,T

)−1∑T
s=k+1 K∗

2

(
((r+1)nT −(s−k/2))/T

b̂2,T

)
V̂sV̂

′
s−k, k ≥ 0(

T b̂2,T

)−1∑T
s=−k+1 K∗

2

(
((r+1)nT −(s+k/2))/T

b̂2,T

)
V̂s+kV̂ ′

s , k < 0
.

Assumption 4.5. (i) We have sup
P∈P U,3

EP

 inf{T/n3,T ,
√

n2,T }
(

ϕ̂(q)1/(2q+1)−ϕ
1/(2q+1)
θ∗
P

)
ϕ̂(q)1/(2q+1)

4

= O (1) as T →

∞, where q is as defined in K3, ϕ̂ (q) ≤ ϕ < ∞, and n2,T /T + n3,T /T → 0, n
10/6
2,T /T → [c2, ∞),

n
10/6
3,T /T → [c3, ∞) with 0 < c2, c3 < ∞; (ii)

√
Tb2,T (u)(D̂2,a (u) − D2,U,a (u)) = OP (1) for all

u ∈ [0, 1]; (iii) Assumption 3.5-(v) hold.

Any estimator ϕ̂ based on kernel nonparametric estimators of â
(r)
1 (·) and σ̂(r) (·) satisfies
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Assumption 4.5-(i). Assumption 4.5-(ii) extends Assumption 3.5-(vi) to the distribution P and is

are useful to show that the effect of using b̂1,T and b̂2,T rather than b1,θP ,T and b
opt
2,T when constructing

ĴT is at most oP (1). The following result shows that ĴT (b̂1,T , b̂2,T ) has the same asymptotic MSE

properties under P as the estimator ĴT (b1,θP ,T , b
opt
2,T ). Since the asymptotic MSE properties of the

estimators with fixed bandwidth parameters have been determined in Section 4.2, from this result

follows the consistency of ĴT (b̂1,T , b̂2,T ) and its asymptotic optimality properties.

Theorem 4.5. Consider any kernel K1 (·) ∈ K3, q as in K3 and any K2 (·) ∈ K2. Suppose

Assumption 4.1-4.5 hold. Then, for all a ∈ Rp,

T 8q/5(2q+1) sup
P∈P U,3

∣∣∣∣MSEP(a′ĴT (b̂1,T , b̂2,T )a) − MSEP(a′ĴT (b1,θP ,T , b
opt
2,T )a)

∣∣∣∣ → 0.

Theorem 4.5 combined with Theorem 4.1 and Theorem 4.2-(iii) establish upper and lower

bounds on the asymptotic MSE. Results on asymptotic minimax optimality for data-dependent

bandwidths parameters can be obtained using Theorem 4.1, Theorem 4.2-(iii) and Theorem 4.4-4.5.

It remains to consider the case ϕP (·) = 0. When this occurs, ϕ̂−1 (·) is OP((T/n3,T )2 + n2,T ).
Under the additional condition ((T/n3,T )2 + n2,T )/T 4/5 → c ∈ [0, ∞) in Assumption 4.5-(i) we

have b̂1,T = OP (1). Thus, ĴT (b̂1,T , b̂2,T ) − JP,T
P→ 0 also when the series is white noise. This is

important in applied work because often researchers use robust standard errors even when they

are not aware of whether any dependence is present at all.

5 Theoretical Results About the Power of HAR Tests Under Gen-

eral E (Vt)

A long-lasting problem in time series econometrics is the low/non-monotonic power of HAR infer-

ence tests under nonstationary alternative hypotheses. The problem involves HAR tests outside

the regression model that can be characterized by an alternative hypothesis involving E (Vt) = µt

with µt ̸= 0 for at least one t. The process µt can be any piecewise continuous function of t. For ex-

ample, tests for structural breaks, tests for regime switching and tests for time-varying parameters

can be framed in this way. To see this, consider a linear regression model,

yt = x′
tβt + et, t = 1, . . . , T. (5.1)
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The null hypothesis of no break in the regression coefficient of xt is written as Hβ,0 : βt = β0 for all

t for some β0 ∈ Rp [see, e.g., Andrews (1993)]. The alternative hypothesis may be of several forms.

Let Hβ,1 : βt = β (t/T ) (t = 1, . . . , T ) for some piecewise continuous function β (·). Estimating

(5.1) by least-squares yields yt = x′
tβ̂ + êt for all t where β̂ is the least-squares estimate and {êt}

are the least-squares residuals. Letting Vt = xtêt, the null hypothesis Hβ,0 can be rewritten as

H0 : E (Vt) = 0 for all t while the alternative hypothesis Hβ,1 can be rewritten as H1 : E (Vt) = µt

where µt ̸= 0 for at least one t. Structural break tests are based on an estimate of the LRV of

Vt = xtêt. While under H0 Vt is zero-mean, under H1 the mean of Vt is time-varying. Under the

alternative hypothesis, it is required for consistency of the test that the LRV estimator converges

to some positive semidefinite matrix since the numerator of the test statistics diverges to infinity.

However, time-variation in the mean of Vt severely biases upward traditional LRV estimators which

then lead to tests with non-monotonic power. Casini et al. (2023) established analytical results

for this phenomenon, which they referred to as low frequency contamination. We show that the

proposed nonlinear prewhitened DK-HAC estimator accounts for nonstationarity also under the

alternative hypothesis and leads to consistent tests with good monotonic power. Although the

main theoretical result of this section is presented for a particular HAR test and a particular form

of H1, this result is general enough to provide guidance for most cases discussed in the literature.

We present theoretical results about the power of a popular forecast evaluation test, namely

the Diebold-Mariano test [cf. Diebold and Mariano (1995)], which can be also framed as above.

We focus on the Diebold-Mariano test for ease of the exposition. Similar results hold for the other

HAR inference tests that can be framed as above, though the proofs change slightly depending on

the specific test statistic. Suppose the goal is to forecast some variable yt. Two forecast models are

used: yt = β(1)+β(2)x
(i)
t−1+et where x

(i)
t−1 is some predictor and i = 1, 2. That is, each forecast model

uses an intercept and a predictor. The parameters β(1) and β(2) are estimated using least-squares

in the in-sample t = 1, . . . , Tm with a fixed forecasting scheme. Each forecast model generates

a sequence of τ (= 1)-step ahead out-of-sample losses L
(i)
t (i = 1, 2) for t = Tm + 1, . . . , T − τ.

Then dt ≜ L
(2)
t − L

(1)
t denotes the loss differential at time t. Let dL denote the average of the loss

differentials. The Diebold-Mariano test statistic is defined as tDM ≜ T 1/2
n dL/Ĵ

1/2
dL,T , where ĴdL,T is

an estimate of the LRV of the loss differentials and Tn is the number of observations in the out-of-

sample. Throughout, we use the quadratic loss. The true model is yt = β
(1)
0 + β

(2)
0 x

(0)
t−1 + et where

x
(0)
t−1 is a predictor and et is a zero-mean error. We assume that the conditions for consistency and

asymptotic normality of the least-squares estimates of β
(1)
0 and β

(2)
0 are satisfied.
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In this setting, V̂t = dt. The hypothesis testing problem is given by

H0 : E
(
V̂t

)
= 0, for all t, (5.2)

H1 : E
(
V̂t

)
= µt, with µt ̸= 0 for at least one t.

H0 corresponds to equal predictive ability between the two forecast models while H1 corresponds

to the two forecast models performing differently.

Since we want to study the power of tDM, we need to work under the alternative hypothesis.

The two competing forecast models are as follows: the first model uses the actual true predictor

(i.e., x
(1)
t−1 = x

(0)
t−1 for all t) while the second model differs in that in place of x

(0)
t−1 it uses x

(2)
t−1 =

x
(0)
t−1 + uX2,t for t ≤ Tb and x

(2)
t−1 = δ + x

(0)
t−1 + uX2,t for t > Tb with Tb > Tm, and uX2,t is a zero-mean

error term. Evidently, the null hypotheses of equal predictive ability should be rejected whenever

δ > 0. We consider tDM normalized by different LRV estimators. The HAC estimator is defined as

ĴdL,HAC,T ≜
T −1∑

k=−T +1
K1 (bT k) Γ̂ (k) , Γ̂ (k) = T −1

T∑
t=|k|+1

V̂tV̂t−|k|,

where K1 (·) is a kernel (e.g., the Bartlett and QS) and bT a bandwidth. Kiefer et al. (2000)

proposed to use a LRV estimator that keeps bT at a fixed fraction of T , i.e., ĴKVB,T ≜ T −1∑T
t=1

∑T
s=1

(1 − |t − s| /T ) V̂tV̂s which is equivalent to the Newey-West estimator with bT = T −1.

We present theoretical results about the power of tDM. Let tDM,i = T 1/2
n dL/

√
ĴdL,i,T denote

the DM test statistic where i = DK, pwDK, KVB, EWC, A91, pwA91, NW87 and pwNW87.
ĴdL,A91,T and ĴdL,NW87,T are ĴdL,HAC,T where K1 (·) is the Bartlett and QS kernel, respectively.14

ĴdL,pwA91,T and ĴdL,pwNW87,T are the prewhitened HAC estimators using the QS and Bartlett kernel,

respectively, and the prewhitening procedure of Andrews and Monahan (1992). “DK” refers to the

DK-HAC estimator from Casini (2023b) with the MSE-optimal kernels and bandwidths whereas

“pwDK” refers to the prewhitened DK-HAC estimator Ĵpw,T in (2.3). Define the power of tDM,i

as Pδ(|tDM,i| > zα) where zα is the two-sided standard normal critical value and α ∈ (0, 1) is the

significance level. To avoid repetitions we present the results only for i = DK, pwDK, KVB, NW87
and pwNW87. The results concerning the EWC estimator are the same as those for the KVB’s

fixed-b estimator. The results pertaining to Andrews’ (1991) HAC estimator (with and without

prewhitening) are the same as those corresponding to Newey and West’s (1987) estimator (with and

without prewhitening, respectively). For the HAC and DK-HAC estimators we report the results

14Since {V̂t} is only observed in the out-of-sample, the LRV estimators use a sample of Tn observations.
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for the MSE-optimal bandwidth [see Andrews (1991), Casini (2023b) and Whilelm (2015)].15 We

set nT = n2,T = n3,T = T 2/3 which satisfy the growth rate bounds [see Casini (2023b) for details].

Let nδ = T − Tb − 2 denote the length of the regime in which x
(2)
t exhibits a shift δ in the mean.

The alternative hypothesis depends on the shift magnitude δ and on how long the shift lasts for.

Here the latter is nδ. More generally, this is the set of time points such that E(V̂t) = µt ̸= 0 holds.

Theorem 5.1. Let {dt − E(dt)} be a SLS process satisfying Assumption 2.1 and 3.1, and nδ =
O(T 1/2+ζ

n ) where ζ ∈ (0, 1/2) such that T ζ
nb

1/2
T → 0 and T ζ

n(b̂∗
1,T )1/2 → 0. Then, we have:

(i) If bT → 0, then Pδ(|tDM,NW87| > zα) → 0. If bT = O(T −1/3), then |tDM,NW87| = OP(T ζ−1/6
n )

and Pδ(|tDM,NW87| > zα)→ 0.

(ii) If bT → 0, then Pδ(|tDM,pwNW87| > zα) → 0. If bT = O(T −1/3), then |tDM,pwNW87| =
OP(T ζ−1/6

n ) and Pδ(|tDM,pwNW87| > zα)→ 0.

(iii) If bT = T −1, then |tDM,KVB| = OP(T ζ−1/2
n ) and Pδ(|tDM,KVB| > zα)→ 0.

(iv) Under Assumption 3.2-(i-iii), |tDM,DK| = δ2OP(T ζ
n) and Pδ(|tDM,DK| > zα)→ 1.

(v) Under Assumption 3.2-(i-iii), 3.5-(i,iv) and 3.6, |tDM,pwDK| = δ2OP(T ζ
n) and Pδ(|tDM,pwDK| >

zα)→ 1.

Note that bT = O(T −1/3) in parts (i)-(ii) refers to the MSE-optimal bandwidth for the Newey

and West’s (1987) estimator. The conditions T ζ
nb

1/2
T → 0 and T ζ

n(b̂∗
1,T )1/2 → 0 mean that the length

of the regime in which x
(2)
t exhibits a shift δ in the mean increases to infinity at a slower rate

than T . Theorem 5.1 implies that when the (prewhitened or non-prewhitened) HAC estimators

or the fixed-b LRV estimators are used, the DM test is not consistent and its power converges to

zero. The theorem suggests that prewhitened and non-prewhitened HAC estimators suffer from

this problem in a similar way. The theorem also implies that the power functions corresponding

to tests based on HAC estimators lie above the power functions corresponding to those based on

fixed-b/EWC LRV estimators. An additional feature is that |tDM,NW87|, |tDM,pwNW87| and |tDM,KVB|
do not increase in magnitude with δ because δ appears in both the numerator and denominator.

The results concerning the DK-HAC estimator and the prewhitened DK-HAC estimator Ĵpw,T show

that these issues do not occur when these estimators are used. In fact, the test is consistent and

its power increases with δ and with the sample size. We provide finite-sample evidence in support

of these theoretical results in Section 6.

15For the HAC estimators we also report the result for any bandwidth choice bT → 0 such that TbT → ∞, which
is sufficient for the consistency of the estimator.
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6 Small-Sample Evaluations

We now show that the prewhitened DK-HAC estimators lead to HAR inference tests that have

accurate null rejection rates when there is strong dependence and have superior power properties

relative to those based on traditional LRV estimators. We consider HAR tests in the linear regres-

sion model as well as applied to the forecast evaluation literature, namely the Diebold-Mariano

test and the forecast breakdown test of Giacomini and Rossi (2009).

The linear regression models have an intercept and a stochastic regressor. We focus on

the t-statistics tr =
√

T (β̂(r) − β
(r)
0 )/

√
Ĵ

(r,r)
X,T where ĴX,T is a consistent estimator of the limit

of Var(
√

T (β̂ − β0)) and r = 1, 2. t1 is the t-statistic for the parameter associated to the intercept

while t2 is associated to the stochastic regressor. Two regression models are considered. We run a

t-test on the intercept in model M1 whereas a t-test on the coefficient of the stochastic regressor

is run in model M2. The models are,

yt = β
(1)
0 + δ + β

(2)
0 xt + et, t = 1, . . . , T, (6.1)

for the t-test on the intercept and

yt = β
(1)
0 + (β(2)

0 + δ)xt + et, t = 1, . . . , T, (6.2)

for the t-test on β
(2)
0 where δ = 0 under the null hypotheses. In model M1 we set β

(1)
0 = 0,

β
(2)
0 = 1, xt ∼ i.i.d. N (1, 1) and et = ρet−1 + ut, ρ = 0.4, 0.9, ut ∼ i.i.d. N (0, 0.7). Model M2

involves segmented locally stationary errors: β
(1)
0 = β

(2)
0 = 0, xt = 0.6 + 0.8xt−1 + ux,t, ux,t ∼

i.i.d. N (0, 1) and et = ρtet−1 + ut, ρt = max {0, 0.8 (cos (1.5 − cos (5t/T )))} for t < 4T/5 and

et = 0.5et−1 + ut, ut ∼ i.i.d. N (0, 1) for t ≥ 4T/5. Note that ρt varies smoothly between 0 and

0.7021. Then, ĴX,T = (X ′X/T )−1ĴT (X ′X/T )−1 where X = [X1, . . . , XT ]′ and Xt = [1, xt]′.
Next, we move to the forecast evaluation tests. The Diebold-Mariano test statistic is defined

as in Section 5, tDM ≜ T 1/2
n dL/Ĵ

1/2
dL,T . In model M3 we consider an out-of-sample forecasting exercise

with a fixed scheme where, given a sample of T observations, 0.5T observations are used for the

in-sample and the remaining half is used for prediction. To evaluate the empirical size, we specify

the following data-generating process and the two forecasting models that have equal predictive

ability. The true model for yt is given by yt = β
(1)
0 + β

(2)
0 x

(0)
t−1 + et where x

(0)
t−1 ∼ i.i.d. N (1, 1),

et = 0.8et−1 + ut with ut ∼ i.i.d. N (0, 1) and we set β
(1)
0 = 0, β

(2)
0 = 1. The two competing

models differ on the predictor used in place of x
(0)
t . The first forecast model uses x

(1)
t while the

second uses x
(2)
t where x

(1)
t and x

(2)
t are i.i.d. N (1, 1) sequences, both independent from x

(0)
t . Each
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forecast model generates a sequence of τ (= 1)-step ahead out-of-sample losses L
(i)
t (i = 1, 2) for

t = T/2+1, . . . , T −τ. Then dt ≜ L
(2)
t −L

(1)
t denotes the loss differential at time t. The test rejects

the null of equal predictive ability when (after normalization) dL is sufficiently far from zero.

Next, we specify the alternative hypotheses for the Diebold-Mariano test. The two competing

forecast models are as follows: the first model uses the actual true data-generating process while

the second model differs in that in place of x
(0)
t−1 it uses x

(2)
t−1 = x

(0)
t−1 + uX2,t for t ≤ 3T/4 and

x
(2)
t−1 = δ + x

(0)
t−1 + uX2,t for t > 3T/4, with uX2,t ∼ i.i.d. N (0, 1). The null hypotheses of equal

predictive ability should be rejected whenever δ > 0.
Finally, we consider model M4 which we use for investigating the performance the t-test

for forecast breakdown of Giacomini and Rossi (2009). Suppose we want to forecast a variable

yt which follows yt = β
(1)
0 + β

(2)
0 xt−1 + δxt−11{t > T 0

1 } + et where xt ∼ i.i.d. N (1.5, 1.5) and

et = 0.3et−1 + ut with ut ∼ i.i.d. N (0, 0.7), β
(1)
0 = β

(2)
0 = 1 and T 0

1 = Tλ0
1 with λ0

1 = 0.85. The

test detects a forecast breakdown when the average of the out-of-sample losses differs significantly

from the average of the in-sample losses. The in-sample is used to obtain estimates of β
(1)
0 and

β
(2)
0 which are in turn used to construct out-of-sample forecasts ŷt = β̂

(1)
0 + β̂

(2)
0 xt−1. The test is

defined as tGR ≜ T 1/2
n SL/Ĵ

1/2
SL where SL ≜ T −1

n

∑T −τ
t=Tm+1 SLt+τ , SLt+τ is the surprise loss at time

t + τ , i.e., the difference between the time t + τ out-of-sample loss and in-sample-average loss,

SLt+τ = Lt+τ − Lt+τ . Here Tn is the sample size in the out-of-sample, Tm is the sample size in the

in-sample and ĴSL is a LRV estimator. We consider a fixed forecasting scheme and τ = 1.

We consider the following DK-HAC estimators: ĴT,pw,SLS = ĴT,pw as discussed in Section 2,

ĴT,pw,1 which uses prewhitening with a single block [nT = T in (2.2)] (i.e., stationary prewhitening),

ĴT,pw,SLS,µ which uses prewhitening involving a VAR(1) with time-varying intercept [i.e., with µ̂t

in (2.2)]. The asymptotic properties of ĴT,pw,SLS,µ are the same as those of ĴT,pw,SLS since µ̂t

plays no role in the theory given the zero-mean assumption on {Vt}. However, it leads to power

enhancement under nonstationary alternative hypotheses. The asymptotic properties of ĴT,pw,1

follows as a special case from the properties of ĴT,pw,SLS. We set nT = n2,T = n3,T = T 2/3. For the

test of Giacomini and Rossi (2009) we do not report the results for ĴT,pw,1 because the stationarity

assumption is clearly violated under the alternative. We compare tests using these estimators to

those using the following estimates: Andrews’ (1991) HAC estimator with automatic bandwidth;

Andrews’ (1991) HAC estimator with automatic bandwidth and the prewhitening procedure of

Andrews and Monahan (1992); Newey and West’s (1987) HAC estimator with the automatic

bandwidth as proposed in Newey and West (1994); Newey and West’s (1987) HAC estimator with

the automatic bandwidth as proposed in Newey and West (1994) and the prewhitening procedure;
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Newey-West with the fixed-b method of Kiefer et al. (2000); the Empirical Weighted Cosine (EWC)

of Lazarus et al. (2018). We consider the following sample sizes: T = 200, 400 for M1-M2 and

T = 400, 800 for model M3-M4. We set Tm = 200, 400 for M3 and Tm = 240, 480 for M4. The

nominal size is α = 0.05 throughout.

Table 1-2 report the rejection rates under the null hypothesis for model M1-M4. We begin

with model M1 with medium dependence (ρ = 0.4). The prewhitened DK-HAC estimators lead

to tests with accurate rejection rates that are slightly better than those obtained with Newey-

West with fixed-b and to EWC. In contrast, the classical HAC estimators of Andrews (1991) and

Newey and West (1987) are less accurate with rejection rates higher than the nominal level. The

prewhitening of Andrews and Monahan (1992) helps to reduce the size distortions but they still

persist for the Newey-West estimator even for T = 400. For higher dependence (i.e., ρ = 0.9),
using EWC and ĴT,pw,SLS,µ yield oversized tests, though by a small margin. The best size control

is achieved using the Newey-West with fixed-b (KVB), ĴT,pw,1 and ĴT,pw,SLS.

For model M2, Newey-West with fixed-b and the prewhitened DK-HAC (ĴT,pw,1, ĴT,pw,SLS,

ĴT,pw,µ) allow accurate rejection rates. In some cases, tests based on the prewhitened DK-HAC

are superior to those based on fixed-b (KVB). The tests with EWC are slightly oversized when

T = 200 but close to the nominal level when T = 400. The classical HAC of Andrews (1991) and

Newey and West (1987), either prewhitened or not, imply oversized tests with T = 200.

Turning to the HAR tests for forecast evaluation, Table 2 report some striking results. First,

tests based on the Newey-West with fixed-b (KVB) have size essentially equal to zero, while those

based on the EWC and prewhitened or non-prewhitened classical HAC estimators are oversized.

The prewhitened DK-HAC allows more accurate tests. For model M4, many of the tests have size

equal to or close to zero. This occurs using the classical HAC, either prewhitened or not and EWC.

The prewhitened DK-HAC estimators and Newey-West with fixed-b (KVB) allow controlling the

size reasonably well. Overall, Table 1-2 in part confirm previous evidence and in part suggest

new facts. Newey-West with fixed-b (KVB) leads to better size control than using the classical

HAC estimators of Andrews (1991) and Newey and West (1987) even when the latter are used

in conjunction with the prewhitening device of Andrews and Monahan (1992). The new result is

that several of the LRV estimators proposed in the literature can lead to tests having null rejection

rates equal to or close to zero. This occurs because the null hypotheses involves nonstationary

data generating mechanisms. These LRV estimators are inflated and the associated test statistics

are undersized. This is expected to have negative consequences for the power of the tests, as we

will see below. The estimators proposed in this paper perform well in leading to tests that control
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the null rejection rates for all cases. They are in general competitive with using the Newey-West

with fixed-b (KVB) when the latter does not fail and in some cases can also outperform it.

Table 3-4 report the empirical power of the tests for model M1-M4. For model M1 with

ρ = 0.9 and M2 we see that all tests have good and monotonic power. It is fair to compare tests

based on the DK-HAC estimators relative to using Newey-West with fixed-b (KVB) since they have

similar well-controlled null rejection rates. Tests based on the Newey-West with fixed-b (KVB)

sacrifices power more than using the DK-HAC estimators and the difference is substantial. The

classical HAC estimators have higher power but it is unfair to compare them since they are often

oversized. A similar argument applies to using the EWC.

We now move to the forecast evaluation tests. For both models M3 and M4 we observe

several features of interests. Essentially all tests proposed previously experience severe power

issues. The power is either non-monotonic, very low or equal zero. This holds when using the

classical HAC estimators of Andrews (1991) as well as Newey and West (1987) irrespective of

whether prewhitening is used, with the EWC and the Newey-West with fixed-b (KVB). The only

exceptions are tests based on the Newey and West’s (1987) and Andrews’ (1991) HAC estimator

with prewhitening in model M4 that display some power but much lower compared to using the

prewhitened DK-HAC estimators. The latter have excellent power. The reason for the severe

power problems for the previous LRV-based tests is that models M3 and M4 involve nonstationary

alternative hypotheses. The sample autocovariances become inflated and overestimate the true

autocovariances. The theoretical results about the power in Theorem 5.1 suggest that this issue

becomes more severe as δ increases, which explains the non-monotonic power for some of the

tests, with tests based on fixed-b methods that include many lags suffering most. The double

smoothing in the DK-HAC estimators allows to avoid this problem because it flexibly accounts for

nonstationarity. The key idea is not to mix observations belonging to different regimes. Simulation

results for additional data-generating processes involving ARMA, ARCH and heteroskedastic errors

are not discussed here because the results are qualitatively equivalent.

7 Conclusions

We introduce a nonparametric nonlinear VAR prewhitened long-run variance (LRV) estimator

for the construction of standard errors robust to autocorrelation and heteroskedasticity that can

be used for hypothesis testing both within and outside the linear regression model. HAR tests

normalized by the proposed estimator exhibit accurate null rejection rates even when there is strong
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dependence. We show theoretically that existing estimators lead to HAR tests that have low/non-

monotonic power under nonstationary alternative hypotheses while the proposed estimator has

good monotonic power thereby addressing a long-lasting problem in time series econometrics.

The proposed method is theoretically valid under general nonstationary random variables. We

also establish mean-squared error bounds for LRV estimation that are sharper than previously

established and use them to determine the data-dependent bandwidths.

Supplemental Materials

The supplement for online publication [cf. Casini and Perron (2021b)] presents the proofs of the

results in the paper.
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A Appendix

A.1 Tables

Table 1: Empirical small-sample size of t-test for model M1-M2
M1, ρ = 0.4 M1, ρ = 0.9 M2

α = 0.05 T = 200 T = 400 T = 200 T = 400 T = 200 T = 400

ĴT , QS, prew 0.054 0.045 0.085 0.065 0.061 0.053

ĴT , QS, prew, SLS 0.052 0.043 0.086 0.051 0.065 0.054

ĴT , QS, prew, SLS, µ 0.049 0.048 0.103 0.092 0.063 0.054

Andrews 0.082 0.065 0.162 0.118 0.095 0.050

Andrews, prew 0.063 0.057 0.104 0.083 0.077 0.048

Newey-West 0.114 0.090 0.351 0.272 0.138 0.057

Newey-West, prew 0.075 0.064 0.110 0.077 0.090 0.059

Newey-West, fixed-b (KVB) 0.058 0.056 0.091 0.066 0.069 0.052

EWC 0.058 0.055 0.149 0.113 0.071 0.048

Table 2: Empirical small-sample size for model M3-M4
M3 M4

α = 0.05 T = 400 T = 800 T = 400 T = 800

ĴT , QS, prew, SLS 0.065 0.060 0.071 0.066

ĴT , QS, prew, SLS, µ 0.065 0.061 0.077 0.067

Andrews 0.082 0.073 0.000 0.000

Andrews, prew 0.080 0.074 0.005 0.000

Newey-West 0.080 0.074 0.000 0.000

Newey-West, prew 0.078 0.073 0.000 0.000

Newey-West, fixed-b (KVB) 0.002 0.002 0.074 0.061

EWC 0.080 0.074 0.018 0.022
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Table 3: Empirical small-sample power of t-test for model M1-M2
M1 M2

α = 0.05, T = 400 δ = 0.5 δ = 1 δ = 2 δ = 0.1 δ = 0.2 δ = 0.4

ĴT , QS, prew 0.344 0.807 1.000 0.387 0.889 1.000

ĴT , QS, prew, SLS 0.378 0.787 1.000 0.330 0.813 1.000

ĴT , QS, prew, SLS, µ 0.463 0.849 1.000 0.347 0.833 1.000

Andrews 0.430 0.864 1.000 0.450 0.922 1.000

Andrews, prew 0.360 0.812 1.000 0.433 0.911 1.000

Newey-West 0.630 0.958 1.000 0.511 0.938 1.000

Newey-West, prew 0.363 0.811 1.000 0.443 0.911 1.000

Newey-West, fixed-b (KVB) 0.274 0.655 0.980 0.329 0.758 0.990

EWC 0.436 0.886 1.000 0.392 0.890 1.000

Table 4: Empirical small-sample power for model M3-M4
M3 M4

α = 0.05, T = 400 δ = 0.5 δ = 2 δ = 6 δ = 0.5 δ = 1 δ = 2

ĴT , QS, prew, SLS 0.495 0.920 1.000 0.613 0.923 1.000

ĴT , QS, prew, SLS, µ 0.498 0.940 1.000 0.663 0.957 1.000

Andrews 0.158 0.014 0.000 0.000 0.043 0.073

Andrews, prew 0.224 0.056 0.000 0.351 0.942 0.952

Newey-West 0.179 0.302 0.587 0.019 0.821 1.000

Newey-West, prew 0.137 0.014 0.000 0.003 0.278 0.722

Newey-West, fixed-b (KVB) 0.059 0.008 0.000 0.000 0.000 0.000

EWC 0.087 0.018 0.000 0.062 0.000 0.000
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S.A Preliminaries

In this section we present a formal definition of SLS processes which is implied by Assumption 2.1 on
f (u, ω) . Let 0 = λ0 < λ1 < . . . < λm0 < λm0+1 = 1 where m0 may be fixed or grow to infinity.
A function G (u, ·) : [0, 1] × R → C is said to be piecewise (Lipschitz) continuous in u with m0 + 1
segments if for each segment j = 1, . . . , m0 + 1 it satisfies supu̸=v |G (u, ω) − G (v, ω) | ≤ K|u − v|
for any ω ∈ R with λj−1 < u, v ≤ λj for some K < ∞. We define Gj (u, ω) = G (u, ω) for λj−1 <
u ≤ λj . A function G (·, ·) : [0, 1] × R → C is said to be left-differentiable at u0 if ∂G (u0, ω) /∂−u ≜
limu→u−

0
(G (u0, ω) − G (u, ω)) / (u0 − u) exists for any ω ∈ R.

Definition S.A.1. A sequence of stochastic processes Vt,T (t = 1, . . . , T ) is called segmented locally sta-
tionary (SLS) with m0 + 1 regimes, transfer function A0 and trend µ· if there exists a representation,

Vt,T = µj (t/T ) +
� π

−π
exp (iωt) A0

j,t,T (ω) dξ (ω) ,
(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (S.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T and the following holds:

(i) ξ (λ) is a stochastic process on [−π, π] with ξ (ω) = ξ (−ω) and

cum {dξ (ω1) , . . . , dξ (ωr)} = φ

 r∑
j=1

ωj

 gr (ω1, . . . , ωr−1) dω1 . . . dωr,

where cum {·} denotes the cumulant spectra of r-th order, g1 = 0, g2 (ω) = 1, |gr (ω1, . . . , ωr−1)| ≤ Mr

for all r with Mr being a constant that may depend on r, and φ (ω) =
∑∞

j=−∞ δ (ω + 2πj) is the period
2π extension of the Dirac delta function δ (·).

(ii) There exists a constant K and a piecewise continuous function A : [0, 1] ×R → C such that, for
each j = 1, . . . , m0 + 1, there exists a 2π-periodic function Aj : (λ0

j−1, λ0
j ] × R → C with Aj (u, −ω) =

Aj (u, ω), λ0
j ≜ T 0

j /T and for all T,

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (S.2)

sup
1≤j≤m0+1

sup
T 0

j−1<t≤T 0
j , ω

∣∣∣A0
j,t,T (ω) − Aj (t/T, ω)

∣∣∣ ≤ KT −1. (S.3)

(iii) µj (t/T ) is piecewise continuous.

In the context of HAR inference E (Vt) = 0 and so µ (t/T ) = 0 for all t in Definition S.A.1. In view
of Definition S.A.1, Assumption 2.1 also holds with f (u, ω) replaced by A (u, ω) and this property is
used in some parts of the proofs. In Assumption 3.1-(ii), the continuity points are those u ∈ [0, 1] such
that u ̸= λ0

j (j = 1, . . . , m0 + 1) whereas the discontinuity points are those u ∈ [0, 1] such that u = λ0
j

(j = 1, . . . , m0 + 1).

S.B Proofs of the Results in Section 3

In some of the proofs below β is understood to be on the line segment joining β̂ and β0. We discard the
degrees of freedom adjustment T/ (T − p) from the derivations since asymptotically it does not play any

S-1
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role. Similarly, we use T/nT in place of (T − nT ) /nT in the expression for Γ̂∗
D (k) and Γ̂ (k). We collect

the break dates in T ≜ {T 0
1 , . . . , T 0

m0}.

S.B.1 Proof of Theorem 3.1

Let

Ĵ∗
T = Ĵ∗

T (bθ1,T , bθ2,T ) ≜
T −1∑

k=−T +1
K1 (bθ1,T k) Γ̂∗ (k),

where Γ̂∗ (k) ≜ (nT /T )
∑⌊T/nT ⌋

r=0 ĉ∗
T (rnT /T, k) and

ĉ∗
T (rnT /T, k) ≜

(Tb2,T )−1∑T
s=k+1 K∗

2

(
((r+1)nT −(s−k/2))/T

bθ2,T

)
V̂ ∗

s V̂ ∗′
s−k, k ≥ 0

(Tb2,T )−1∑T
s=−k+1 K∗

2

(
((r+1)nT −(s+k/2))/T

bθ2,T

)
V̂ ∗

s+kV̂ ∗′
s , k < 0

, (S.1)

with V̂ ∗
s = V ∗

s (β̂) where β̂ is elongated to include Â·,j (j = 1, . . . , pA). Define J̃∗
T as equal to Ĵ∗

T but with
V ∗

t = Vt −
∑pA

j=1 Ar,jVt−j in place of V̂ ∗
s and define J∗

T as equal to JT but with V ∗
t in place of Vt (β0). The

proof uses the following decomposition,

Ĵpw,T − JT =
(
Ĵpw,T − J∗

T,D̂

)
+
(
J∗

T,D̂
− J∗

T,D

)
+
(
J∗

T,D − JT

)
, (S.2)

where J∗
T,D = T −1∑T

s=pA+1
∑T

t=pA+1 DsE(V ∗
s V ∗′

t )D′
t, and J∗

T,D̂
is equal to J∗

T,D but with D̂s in place of

Ds.

Lemma S.B.1. Under the assumptions of Theorem 3.1-(i), we have

Ĵ∗
T (bθ1,T , bθ2,T ) − J∗

T = oP (1) . (S.3)

Proof. Under Assumption 3.1, ||
� 1

0 f∗(0) (u, 0) || < ∞, where f∗ is defined analogously to f∗
D but with

Ds = 1 for all s. In view of K1,0 = 0, Theorem 3.1-(i,ii) in Casini (2023b) [with q = 0 in part (ii)]
implies J̃∗

T − J∗
T = oP (1). Note that the assumptions of the aforementioned theorem are satisfied by

{V ∗
t } since they correspond to Assumption 2.1 and 3.1 here. Noting that Ĵ∗

T − J̃∗
T = oP (1) if and only

if a′Ĵ∗
T a − a′J̃∗

T a = oP (1) for arbitrary a ∈ Rp. We shall provide the proof only for the scalar case. We
show that

√
nT bθ1,T (Ĵ∗

T − J̃∗
T ) = OP (1). Let J̃∗

T (β) denote the estimator that uses {V ∗
t (β)} where β is

elongated to include A·,j (j = 1, . . . , pA). A mean-value expansion of J̃∗
T (β̂)(= Ĵ∗

T ) about β0 (elongated
to include A·,j (j = 1, . . . , pA)) yields

√
nT bθ1,T (Ĵ∗

T − J̃∗
T ) = bθ1,T

∂

∂β′ J̃
∗
T (β̄)

√
nT (β̂ − β0)

= bθ1,T

T −1∑
k=−T +1

K1 (bθ1,T k) ∂

∂β′ Γ̂
∗ (k) |β=β̄

√
nT (β̂ − β0), (S.4)

for some β̄ on the line segment joining β̂ and β0. Note also that ĉ∗(rnT /T, k) depends on β although we
have omitted it. We have for k ≥ 0 (the case k < 0 is similar and omitted),
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∥∥∥ ∂

∂β′ ĉ
∗ (rnT /T, k)

∥∥∥|β=β̄ (S.5)

=
∥∥∥∥∥(Tbθ2,T )−1

T∑
s=k+1

K∗
2

(
(r + 1) nT − (s + k/2)

Tbθ2,T

)

×
(

V ∗
s (β) ∂

∂β′ V
∗

s−k (β) + ∂

∂β′ V
∗

s (β) V ∗
s−k (β)

)∥∥∥∥∥|β=β̄

≤ 2

(Tbθ2,T )−1
T∑

s=1
K∗

2

(
(r + 1) nT − (s + k/2)

Tbθ2,T

)2

sup
β

(V ∗
s (β))2

1/2

×

(Tbθ2,T )−1
T∑

s=1
K∗

2

(
(r + 1) nT − (s + k/2)

Tbθ2,T

)2

sup
β

∥∥∥∥ ∂

∂β′ V
∗

s (β)
∥∥∥∥2
1/2

= OP (1) ,

where we have used the boundedness of the kernel K2 (and thus of K∗
2 ), Assumption 3.2-(ii,iii) and

Markov’s inequality to each term in parentheses; also sups≥1 E supβ ||V ∗
s (β) ||2 < ∞ under Assumption

3.2-(ii,iii) by a mean-value expansion and,

(Tbθ2,T )−1
T∑

s=k+1
K∗

2 (((r + 1) nT − (s + k/2)) /Tbθ2,T )2 →
� 1

0
K2

2 (x) dx < ∞. (S.6)

Then, (S.4) is such that

bθ1,T

T −1∑
k=T +1

K1 (bθ1,T , k) ∂

∂β′ Γ̂
∗ (k) |β=β̄

√
nT

(
β̂ − β0

)

= bθ1,T

T −1∑
k=−T +1

K1 (bθ1,T k) nT

T

T/nT∑
r=0

OP (1) OP (1)

= OP (1) ,

where the last equality uses bθ1,T
∑T −1

k=−T +1 |K1(bθ1,T k)| →
�

|K1 (x) |dx < ∞. This concludes the proof of
the lemma because

√
nT bθ1,T → ∞ by assumption. □

Lemma S.B.2. Under the assumptions of Theorem 3.1-(i), we have

Ĵ∗
T (bθ1,T , bθ2,T ) − Ĵ∗

T

(
b̂∗

1,T , b̂∗
2,T

)
= oP (1) . (S.7)

Proof. Let ST =
⌊
b−r

θ1,T

⌋
and

r ∈ ( max {(12b − 10q − 5) /12 (b − 1) , (b − 1/2 − q) / (b − 1) , q/ (l − 1)}
min {(10q + 17) /24, (3 + 2q) /4, 5q/6 + 5/12, 1}).
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We will use the following decomposition,

Ĵ∗
T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T ) =
(
Ĵ∗

T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T

(
bθ1,T , b̂∗

2,T

))
(S.8)

+
(
Ĵ∗

T

(
bθ1,T , b̂∗

2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T )
)

.

Let N1 ≜ {−ST , −ST + 1, . . . , −1, 1, . . . , ST − 1, ST }, and N2 ≜ {−T + 1, . . . , −ST − 1, ST + 1, . . . , T − 1}.
Let us consider the first term above,

Ĵ∗
T

(
b̂∗

1,T , b̂∗
2,T

)
− ĴT

(
bθ1,T , b̂∗

2,T

)
(S.9)

=
∑

k∈N1

(
K1

(
b̂∗

1,T k
)

− K1 (bθ1,T k)
)

Γ̂∗ (k)

+
∑

k∈N2

K1
(
b̂∗

1,T k
)

Γ̂∗ (k) −
∑

k∈N2

K1 (bθ1,T k) Γ̂∗ (k)

≜ A1,T + A2,T − A3,T .

We first show that A1,T
P→ 0. Let A1,1,T denote A1,T with the summation restricted over positive integers

k. Let ñT = inf
{

T/n3,T ,
√

n2,T

}
. We can use the Liptchitz condition on K1 (·) ∈ K3 to yield,

|A1,1,T | ≤
ST∑
k=1

C2
∣∣∣b̂∗

1,T − bθ1,T

∣∣∣ k ∣∣∣Γ̂∗ (k)
∣∣∣ (S.10)

≤ C
∣∣∣ϕ̂D (q)1/(2q+1) − ϕ

1/(2q+1)
θ∗

∣∣∣ (ϕ̂D (q) ϕθ∗

)−1/(2q+1) (
T b̂∗

2,T

)−1/(2q+1) ST∑
k=1

k
∣∣∣Γ̂∗ (k)

∣∣∣ ,
for some C < ∞. By Assumption 3.5-(i),∣∣∣ϕ̂D (q)1/(2q+1) − ϕ

1/(2q+1)
θ∗

∣∣∣ (ϕ̂D (q) ϕθ∗

)−1/(2q+1)
= OP (1) .

Using the delta method, it suffices to show that B1,T + B2,T + B3,T
P→ 0, where

B1,T =
(
T b̂∗

2,T

)−1/(2q+1) ST∑
k=1

k
∣∣∣Γ̂∗ (k) − Γ̃∗ (k)

∣∣∣ (S.11)

B2,T =
(
T b̂∗

2,T

)−1/(2q+1) ST∑
k=1

k
∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣

B3,T =
(
T b̂∗

2,T

)−1/(2q+1) ST∑
k=1

k |Γ∗
T (k)| ,
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with Γ∗
T (k) ≜ (nT /T )

∑⌊T/nT ⌋
r=0 c∗ (rnT /T, k) . By a mean-value expansion, we have

B1,T ≤
(
T b̂∗

2,T

)−1/(2q+1)
n

−1/2
T

ST∑
k=1

k

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k) |β=β

)√
nT

(
β̂ − β0

)∣∣∣∣ (S.12)

≤ C
(
T b̂∗

2,T

)−1/(2q+1) (
Tbθ2,T

)2r/(2q+1)
n

−1/2
T sup

k≥1

∥∥∥∥ ∂

∂β
Γ̂∗ (k) |β=β

∥∥∥∥√
nT

∥∥∥β̂ − β0
∥∥∥ ,

since r < (10q + 17) /24, and supk≥1 || (∂/∂β) Γ̂∗ (k) |β=β|| = OP (1) using (S.5) and Assumption 3.2-(ii,iii)
(the latter continues to hold for {V ∗

t }). In addition,

E
(
B2

2,T

)
≤ E

(T b̂∗
2,T

)−2/(2q+1) ST∑
k=1

ST∑
j=1

kj
∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣ ∣∣∣Γ̃∗ (j) − Γ∗

T (j)
∣∣∣
 (S.13)

≤
(
T b̂∗

2,T

)−2/(2q+1)−1
S4

T sup
k≥1

T b̂∗
2,T Var

(
Γ̃∗ (k)

)
≤
(
T b̂∗

2,T

)−2/(2q+1)−1 (
Tbθ2,T

)4r/(2q+1)
sup
k≥1

T b̂∗
2,T Var

(
Γ̃∗ (k)

)
≤
(
b̂∗

2,T

)−2/(2q+1)−1
T −1−2/(2q+1)T 16r/5(2q+1) sup

k≥1
T b̂∗

2,T Var
(
Γ̃∗ (k)

)
→ 0,

given that r < (3 + 2q) /4 and supk≥1 T b̂∗
2,T Var(Γ̃∗(k)) = O (1) by Lemma S.A.5 in Casini (2023b) that

also holds with Γ̃∗ (k) in place of Γ̃ (k). Next,

B3,T ≤
(
T b̂∗

2,T

)−1/(2q+1)
ST

∞∑
k=1

|Γ∗
T (k)| (S.14)

≤
(
T b̂∗

2,T

)(r−1)/(2q+1)
OP (1) → 0,

using Assumption 3.1-(i) since r < 1. This gives A1,T
P→ 0. Next, we show that A2,T

P→ 0. Let
A2,1,T = L1,T + L2,T + L3,T , where

L1,T =
T −1∑

k=ST +1
K1

(
b̂∗

1,T k
) (

Γ̂∗ (k) − Γ̃∗ (k)
)

, (S.15)

L2,T =
T −1∑

k=ST +1
K1

(
b̂∗

1,T k
) (

Γ̃∗ (k) − Γ∗
T (k)

)
, and

L3,T =
T −1∑

k=ST +1
K1

(
b̂∗

1,T k
)

Γ∗
T (k) .

We apply a mean-value expansion and use
√

nT (β̂ − β0) = OP (1) as well as (S.5) to obtain

|L1,T | = n
−1/2
T

T −1∑
k=ST +1

C1
(
b̂∗

1,T k
)−b

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣ (S.16)
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= T −1/3+4b/5(2q+1)
T −1∑

k=ST +1
C1k−b

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T −1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T −1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)O (1) OP (1) ,

which converges to zero since r > (12b − 10q − 5) /12 (b − 1). Next,

|L2,T | =
T −1∑

k=ST +1
C1
(
b̂∗

1,T k
)−b ∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣ (S.17)

= C1
(
qK2

1,qϕ̂D (q)
)b/(2q+1)

T b/(2q+1)−1/2
(
b̂∗

2,T

)
b/(2q+1)−1/2

 T −1∑
k=ST +1

k−b

√T b̂∗
2,T

∣∣∣Γ̃∗ (k) − Γ∗
T (k)

∣∣∣ .
Note that,

E

T b/(2q+1)−1/2
(
b̂∗

2,T

)b/(2q+1)−1/2 T −1∑
k=ST

k−b
√

T b̂∗
2,T

∣∣∣Γ̃∗ (k) − Γ∗
T (k)

∣∣∣
2

(S.18)

≤ T 2b/(2q+1)−1
(
b̂∗

2,T

)
2b/(2q+1)−1

 T −1∑
k=ST

k−b

2

O (1)

= T 2b/(2q+1)−1
(
b̂∗

2,T

)
2b/(2q+1)−1S

2(1−b)
T O (1) → 0,

since r > (b − 1/2 − q)/(b − 1) and T b̂∗
2,T Var(Γ̃∗(k)) = O (1), as above. Equations (S.17)-(S.18) combine

to yield L2,T
P→ 0, since ϕ̂D (q) = OP (1) by Assumption 3.5-(i). Let us turn to L3,T . We have,∣∣∣∣∣∣

T −1∑
k=ST +1

K1
(
b̂∗

1,T k
)

Γ∗
T (k)

∣∣∣∣∣∣ ≤
T −1∑

k=ST +1

nT

T

⌊T/nT ⌋∑
r=0

|c∗ (rnT /T, k)| (S.19)

≤
T −1∑

k=ST +1
sup

u∈[0, 1]
|c∗ (u, k)| → 0.

Equations (S.16)-(S.19) imply A2,T
P→ 0. An analogous argument yields A3,T

P→ 0. It remains to show

that (ĴT (bθ1,T , b̂∗
2,T ) − ĴT (bθ1,T , bθ2,T )) P→ 0. Its proof is the same as in Theorem 5.1-(i) in Casini (2023b)

which can be repeated given the conditions n
−1/2
T /(b̂∗

1,T ) → 0, r < 5q/6+5/12, and r > (b−1/2−q)/(b−1).
□

Lemma S.B.3. Under the assumptions of Theorem 3.1-(ii), we have√
Tbθ1,T bθ2,T

(
Ĵ∗

T (bθ1,T , bθ2,T ) − J∗
T

)
= OP (1) .
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Proof. Write√
Tbθ1,T bθ2,T

(
Ĵ∗

T (bθ1,T , bθ2,T ) − J∗
T

)
=
√

Tbθ1,T bθ2,T

(
Ĵ∗

T (bθ1,T , bθ2,T ) − J̃∗
T + J̃∗

T − J∗
T

)
.

Applying Theorem 3.1-(ii) in Casini (2023b) with V ∗
s in place of Vs, we have

√
Tbθ1,T bθ2,T (J̃∗

T − J∗
T ) =

OP (1). Thus, it is sufficient to show
√

Tbθ1,T bθ2,T (Ĵ∗
T (bθ1,T , bθ2,T ) − J̃∗

T ) = oP (1) . A second-order Taylor
expansion gives

√
Tbθ1,T bθ2,T

(
Ĵ∗

T − J̃∗
T

)
=
[√

Tbθ2,T√
nT

√
bθ1,T

∂

∂β′ J̃
∗
T (β0)

]
√

nT

(
β̂ − β0

)
+ 1

2
√

nT

(
β̂ − β0

)′
[√

Tbθ2,T

nT

√
bθ1,T

∂2

∂β∂β′ J̃
∗
T

(
β
)]√

nT

(
β̂ − β0

)
≜ G′

T

√
nT

(
β̂ − β0

)
+ 1

2
√

nT

(
β̂ − β0

)′
HT

√
nT

(
β̂ − β0

)
.

Using Assumption 3.3-(ii),∥∥∥∥ ∂2

∂β∂β′ ĉ
∗ (rnT /T, k)

∥∥∥∥∣∣∣∣
β=β̄

=

∥∥∥∥∥∥(Tbθ2,T )−1
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

bθ2,T

)(
∂2

∂β∂β′ V
∗

s (β) V ∗
s−k (β)

)∥∥∥∥∥∥
∣∣∣∣
β=β̄

= OP (1) ,

and thus,

∥HT ∥ ≤
(

Tbθ2,T bθ1,T

n2
T

)1/2 T −1∑
k=−T +1

|K1 (bθ1,T k)| sup
β∈Θ

∥∥∥∥∥ ∂2

∂β∂β′ Γ̂
∗ (k)

∥∥∥∥∥
≤
(

Tbθ2,T bθ1,T

n2
T

)1/2 T −1∑
k=−T +1

|K1 (bθ1,T k)| OP (1)

≤
(

Tbθ2,T

n2
T bθ1,T

)1/2

bθ1,T

T −1∑
k=−T +1

|K1 (bθ1,T k)| OP (1) = oP (1) ,

since Tbθ2,T /(n2
T bθ1,T ) → 0. Next, we want to show that GT = oP (1). Following Andrews (1991) (cf. the

last paragraph of p. 852), we apply the results of Theorem 3.1-(i,ii) in Casini (2023b) to J̃∗
T where the

latter is constructed using (V ∗′
t , ∂V ∗

t /∂β′ − E(∂V ∗
t /∂β′))′ rather than just with V ∗

t . The first row and
column of the off-diagonal elements of this J̃∗

T (written as column vectors) are now

A1 ≜
T −1∑

k=−T +1
K1 (bθ1,T k) nT

T

T/nT∑
r=0

1
Tbθ2,T

S-7



alessandro casini and pierre perron

×
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

bθ2,T

)
V ∗

s

(
∂

∂β
V ∗

s−k − E
(

∂

∂β
V ∗

s

))

A2 ≜
T −1∑

k=−T +1
K1 (bθ1,T k) nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

bθ2,T

)(
∂

∂β
V ∗

s − E
(

∂

∂β
V ∗

s

))
V ∗

s−k.

By Theorem 3.1-(i,ii) in Casini (2023b) each expression above is OP (1). Given,

GT ≤
√

Tbθ2,T√
nT

√
bθ1,T (A1 + A2) +

√
Tbθ2,T√

nT

√
bθ1,T

T −1∑
k=−T +1

K1 (bθ1,T k) nT

T

T/nT∑
r=0

1
Tbθ2,T

×
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

bθ2,T

) ∣∣∣∣(V ∗
s + V ∗

s−k

)
E
(

∂

∂β
V ∗

s

)∣∣∣∣
≜

√
Tbθ2,T√

nT

√
bθ1,T (A1 + A2) + A3 sup

s

∣∣∣∣E( ∂

∂β
V ∗

s

)∣∣∣∣ ,
and the fact that Tbθ2,T bθ1,T /nT → 0 it remains to show that A3 is oP (1) . Note that

E
(
A2

3

)
≤ Tbθ2,T

nT
b1,T

T −1∑
k=−T +1

T −1∑
j=−T +1

|K1 (bθ1,T k) K1 (bθ1,T j)| 4
(

nT

T

)2 T/nT∑
r=0

T/nT∑
b=0

× 1
Tbθ2,T

1
Tbθ2,T

T∑
s=1

T∑
l=1

K∗
2

(
((r + 1) nT − (s + k/2)) /T

bθ2,T

)

× K∗
2

(
((b + 1) nT − (l + j/2)) /T

bθ2,T

)
|E (V ∗

s V ∗
l )| ,

and that E (V ∗
s V ∗

l ) = c∗ (u, h) + O
(
T −1) uniformly in h = s − l and u = s/T by Lemma S.A.1 in Casini

(2023b). Since
∑∞

h=−∞ supu∈[0, 1] |c∗ (u, h)| < ∞,

E
(
A2

3

)
≤ 1

nT bθ1,T

bθ1,T

T −1∑
k=−T +1

|K1 (bθ1,T k)|

2 � 1

0
K2

2 (x) dx

� 1

0

∞∑
h=−∞

|c∗ (u, h)| du = o (1) .

This implies GT = oP (1) which concludes the proof. □

Lemma S.B.4. Under the assumptions of Theorem 3.1-(ii), we have√
Tbθ1,T bθ2,T

(
Ĵ∗

T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T )
)

= oP (1) .

Proof. Let

r ∈(max{{{(−10 + 4q + 24b) /24 (b − 1)}, {(b − 1/2) / (b − 1)} for b > max (1 + 1/q, 4)},
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{{(8b − 4) / (b − 1) (10q + 5)}, {(b − 2/3 − q/3) / (b − 1)} for b > 1 + 1/q}, q/ (l − 1)},

min {16q/48 + 44/48, 46/48 + 20q/48, 2/3 + q/3}),

and ST =
⌊
b−r

θ1,T

⌋
. We will use the following decomposition

Ĵ∗
T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T ) =
(
Ĵ∗

T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T

(
bθ1,T , b̂∗

2,T

))
(S.20)

+
(
Ĵ∗

T

(
bθ1,T , b̂∗

2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T )
)

.

Let

N1 ≜ {−ST , −ST + 1, . . . , −1, 1, . . . , ST − 1, ST }
N2 ≜ {−T + 1, . . . , −ST − 1, ST + 1, . . . , T − 1} .

Let us consider the first term above,

T 8q/10(2q+1)
(
Ĵ∗

T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T

(
bθ1,T , b̂∗

2,T

))
(S.21)

= T 8q/10(2q+1) ∑
k∈N1

(
K1

(
b̂∗

1,T k
)

− K1 (bθ1,T k)
)

Γ̂∗ (k)

+ T 8q/10(2q+1) ∑
k∈N2

K1
(
b̂∗

1,T k
)

Γ̂∗ (k)

− T 8q/10(2q+1) ∑
k∈N2

K1 (bθ1,T k) Γ̂∗ (k)

≜ A1,T + A2,T − A3,T .

We first show that A1,T
P→ 0. Let A1,1,T denote A1,T with the summation restricted over positive integers

k. Let ñT = inf{T/n3,T ,
√

n2,T }. We can use the Liptchitz condition on K1 (·) ∈ K3 to yield,

|A1,1,T | ≤ T 8q/10(2q+1)
ST∑
k=1

C2
∣∣∣b̂∗

1,T − bθ1,T

∣∣∣ k ∣∣∣Γ̂∗ (k)
∣∣∣ (S.22)

≤ CñT

∣∣∣ϕ̂D (q)1/(2q+1) − ϕ
1/(2q+1)
θ∗

∣∣∣ (ϕ̂D (q) ϕθ∗

)−1/(2q+1)

(
b̂∗

2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k
∣∣∣Γ̂∗ (k)

∣∣∣ ,
for some C < ∞. By Assumption 3.5-(ii), (ñT |ϕ̂D (q) − ϕθ∗ | = OP (1)) and using the delta method, it

suffices to show that B1,T + B2,T + B3,T
P→ 0, where

B1,T =
(
b̂∗

2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k
∣∣∣Γ̂∗ (k) − Γ̃∗ (k)

∣∣∣ , (S.23)

B2,T =
(
b̂∗

2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k
∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣ , and
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B3,T =
(
b̂∗

2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k |Γ∗
T (k)| .

By a mean-value expansion, we have

B1,T ≤
(
b̂∗

2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T n
−1/2
T

ST∑
k=1

k

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k) |β=β

)√
nT

(
β̂ − β0

)∣∣∣∣ (S.24)

≤ C
(
b̂∗

2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)

(
Tbθ2,T

)2r/(2q+1)
ñ−1

T n
−1/2
T sup

k≥1

∥∥∥∥ ∂

∂β
Γ̂∗ (k) |β=β

∥∥∥∥√
nT

∥∥∥β̂ − β0
∥∥∥

≤ C
(
b̂∗

2,T

)(−1+2r)/(2q+1)
T (8q−10)/10(2q+1)+2r/(2q+1)−1/3ñ−1

T sup
k≥1

∥∥∥∥ ∂

∂β
Γ̂∗ (k) |β=β

∥∥∥∥√
nT

∥∥∥β̂ − β0
∥∥∥ P→ 0,

since ñT /T 1/3 → ∞, r < 16q/48 + 44/48, √
nT ||β̂ − β0|| = OP (1), and supk≥1 || (∂/∂β) Γ̂∗ (k) |β=β|| =

OP (1) using (S.5) and Assumption 3.2-(ii,iii). In addition,

E
(
B2

2,T

)
≤ E

(b̂∗
2,T

)−2/(2q+1)
T (8q−10)/5(2q+1)ñ−2

T

ST∑
k=1

ST∑
j=1

kj
∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣ ∣∣∣Γ̃∗ (j) − Γ∗

T (j)
∣∣∣
 (S.25)

≤
(
b̂∗

2,T

)−2/(2q+1)−1
T (8q−10)/5(2q+1)−2/3−1S4

T sup
k≥1

Tb2,T Var
(
Γ̃∗ (k)

)
≤
(
b̂∗

2,T

)−2/(2q+1)−1
T (8q−10)/5(2q+1)−2/3−1 (Tb2,T )4r/(2q+1) sup

k≥1
Tb2,T Var

(
Γ̃∗ (k)

)
≤ T 1/5T 2/5(2q+1)T (8q−10)/5(2q+1)−2/3−1T 4r/(2q+1)T −4r/5(2q+1) sup

k≥1
Tb2,T Var

(
Γ̃∗ (k)

)
→ 0,

given that supk≥1 Tb2,T Var(Γ̃∗(k)) = O (1) using Lemma S.A.5 in Casini (2023b) and r < 46/48+20q/48.
Assumption 3.5-(iii) and

∑∞
k=1 k1−l < ∞ for l > 2 yield

B3,T ≤ b̂
−1/(2q+1)
2,T T (8q−10)/10(2q+1)ñ−1

T C3

∞∑
k=1

k1−l (S.26)

≤ T (−21−14q)/10(2q+1)C3

∞∑
k=1

k1−l → 0,

where we have used the fact that ñT /T 1/3 → ∞. Combining (S.22)-(S.26) we deduce that A1,1,T
P→ 0.

The same argument applied to A1,T where the summation now also extends over negative integers k gives

A1,T
P→ 0. Next, we show that A2,T

P→ 0. Again, we use the notation A2,1,T (resp., A2,2,T ) to denote A2,T

with the summation over positive (resp., negative) integers. Let A2,1,T = L1,T + L2,T + L3,T , where

L1,T = LA
1,T + LB

1,T = T 8q/10(2q+1)

⌊DT T 1/2⌋∑
k=ST +1

+
T −1∑

k=⌊DT T 1/2⌋+1

K1
(
b̂∗

1,T k
) (

Γ̂∗ (k) − Γ̃∗ (k)
)

, (S.27)
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L2,T = LA
2,T + LB

2,T = T 8q/10(2q+1)

⌊DT T 1/2⌋∑
k=ST +1

+
T −1∑

k=⌊DT T 1/2⌋+1

K1
(
b̂∗

1,T k
) (

Γ̃∗ (k) − Γ∗
T (k)

)
,

and L3,T = T 8q/10(2q+1)
T −1∑

k=ST +1
K1

(
b̂∗

1,T k
)

Γ∗
T (k) .

We apply a mean-value expansion, use
√

nT (β̂ − β0) = OP (1) as well as (S.5) to obtain

∣∣∣LA
1,T

∣∣∣ = T 8q/10(2q+1)−1/3
⌊DT T 1/2⌋∑
k=ST +1

C1
(
b̂∗

1,T k
)−b

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣ (S.28)

= T 8q/10(2q+1)−1/3+4b/5(2q+1)
⌊DT T 1/2⌋∑
k=ST +1

C1k−b

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)OP (1) OP (1) ,

which goes to zero since r > (−10 + 4q + 24b) /24 (b − 1) with b > max{1 + 1/q, 4}. We also have

∣∣∣LB
1,T

∣∣∣ = T 8q/10(2q+1)−1/3
T −1∑

k=⌊DT T 1/2⌋+1

C1
(
b̂∗

1,T k
)−b

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)

T −1∑
k=⌊DT T 1/2⌋+1

C1k−b

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+(1−b)/2

∣∣∣∣( ∂

∂β′ Γ̂
∗ (k)

)
|β=β

√
nT

(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+(1−b)/2OP (1) P→ 0,

given that 1 − b < 0 and b > 1 + 1/q. Let us now consider L2,T . We have

∣∣∣LA
2,T

∣∣∣ = T (8q−1)/10(2q+1)
⌊DT T 1/2⌋∑
k=ST +1

C1
(
b̂∗

1,T k
)−b ∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣ (S.29)

= C1
(
2qK2

1,qϕ̂D (q)
)b/(2q+1)

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗

2,T

)b/(2q+1)−1/2
⌊DT T 1/2⌋∑
k=ST +1

k−b

×
√

T b̂∗
2,T

∣∣∣Γ̃∗ (k) − Γ∗
T (k)

∣∣∣ .
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Note that

E

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗

2,T

)b/(2q+1)−1/2
⌊DT T 1/2⌋∑
k=ST +1

k−b
√

T b̂∗
2,T

∣∣∣Γ̃∗ (k) − Γ∗
T (k)

∣∣∣


2

(S.30)

≤ T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗

2,T

)b/(2q+1)−1/2

⌊DT T 1/2⌋∑
k=ST +1

k−b
√

T b̂∗
2,T

(
Var

(
Γ̃∗ (k)

))1/2


2

= T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗

2,T

)2b/(2q+1)−1

⌊DT T 1/2⌋∑
k=ST +1

k−b


2

O (1)

= T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1
2,T D

2(1−b)
T S

2(1−b)
T O (1) → 0,

since r > (b − 1/2) / (b − 1) for b > 4 and
√

T b̂∗
2,T Var

(
Γ̃∗ (k)

)
= O (1) as above. Further,

∣∣∣LB
2,T

∣∣∣ = T (8q−1)/10(2q+1)
T −1∑

k=⌊DT T 1/2⌋+1

C1
(
b̂∗

1,T k
)−b ∣∣∣Γ̃∗ (k) − Γ∗

T (k)
∣∣∣ (S.31)

= C1
(
2qK2

1,qϕ̂D (q)
)b/(2q+1)

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗

2,T

)b/(2q+1)−1/2

×
T −1∑

k=⌊DT T 1/2⌋+1

k−b
√

T b̂∗
2,T

∣∣∣Γ̃∗ (k) − Γ∗
T (k)

∣∣∣ .
Note that

E

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗

2,T

)b/(2q+1)−1/2 T −1∑
k=⌊DT T 1/2⌋+1

k−b
√

T b̂∗
2,T

∣∣∣Γ̃∗ (k) − Γ∗
T (k)

∣∣∣


2

(S.32)

≤ T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗

2,T

)2b/(2q+1)−1

 T −1∑
k=⌊DT T 1/2⌋+1

k−b
√

T b̂∗
2,T

(
Var

(
Γ̃∗ (k)

))1/2


2

= T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗

2,T

)2b/(2q+1)−1

 T −1∑
k=⌊DT T 1/2⌋+1

k−b


2

O (1)

= T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗

2,T

)2b/(2q+1)−1
D

2(1−b)
T T (1−b)O (1) → 0,

since r > (8b − 4) /((b − 1) (10q + 5)) and
√

T b̂∗
2,T Var

(
Γ̃∗ (k)

)
= O (1) as above. Combining (S.29)-(S.30)
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yields L2,T
P→ 0. Let us turn to L3,T . By Assumption 3.5-(iii) and |K1 (·) | ≤ 1, we have,

|L3,T | ≤ T 8q/10(2q+1)
T −1∑

k=ST

C3k−l ≤ T 8q/10(2q+1)C3S1−l
T (S.33)

≤ C3T 8q/10(2q+1)T −4r(l−1)/5(2q+1) → 0,

since r > q/ (l − 1). In view of (S.27)-(S.33) we deduce that A2,1,T
P→ 0. Applying the same argu-

ment to A2,2,T , we have A2,T
P→ 0. Using similar arguments, one has A3,T

P→ 0. It remains to show

that T 8q/10(2q+1)(Ĵ∗
T (bθ1,T , b̂∗

2,T ) − Ĵ∗
T (bθ1,T , bθ2,T )) P→ 0. The proof of the latter result follows from

the proof of the corresponding result in Theorem 5.1-(ii) in Casini (2023b) with r < 2/3 + q/3 and
r > (b − 2/3 − q/3) / (b − 1) . □

Proof of Theorem 3.1. We begin with part (i). Note that

Ĵ∗
T

(
b̂∗

1,T , b̂∗
2,T

)
− J∗

T = Ĵ∗
T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T ) + Ĵ∗
T (bθ1,T , bθ2,T ) − J∗

T . (S.34)

By Lemma S.B.1-S.B.2 the right-hand side is oP (1) . It follows that the first term on the right-hand side
of (S.2) is also oP (1) because the presence of D̂s is irrelevant for the result to hold. We have,

J∗
T,D = 1

T

T∑
s=pA+1

T∑
t=pA+1

DsEV ∗
s (V ∗

t Dt)′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

Ip −
pA∑
j=1

AD,s,j

−1

E

Vs −
pA∑
j=1

AD,s,jVs−j


V ∗

t

Ip −
pA∑
j=1

AD,t,j

−1


′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

Ip −
pA∑
j=1

AD,s,j

−1

× E

Vs −
pA∑
j=1

AD,s,jVs +
pA∑
j=1

AD,s,jVs −
pA∑
j=1

AD,s,jVs−j


V ∗

t

Ip −
pA∑
j=1

AD,t,j

−1


′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

Ip −
pA∑
j=1

AD,s,j

−1

E

Vs −
pA∑
j=1

AD,s,jVs +
pA∑
j=1

AD,s,j (Vs − Vs−j)


×

V ∗
t

Ip −
pA∑
j=1

AD,t,j

−1


′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

E


Vs +

Ip −
pA∑
j=1

AD,s,j

−1
pA∑
j=1

AD,s,j (Vs − Vs−j)


 (S.35)
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×

V ∗
t

Ip −
pA∑
j=1

AD,t,j

−1


′

.

Now note that the sum involving Vs − Vs−j has a telescopic form to a sum. Using the smoothness of
AD,s,j , we have that the sum from any s to T isIp −

pA∑
j=1

AD,s,j

−1
pA∑
j=1

AD,s,j (Vs − Vs−j) (S.36)

+

Ip −
pA∑
j=1

AD,s+1,j

−1
pA∑
j=1

AD,s+1,j (Vs+1 − Vs+1−j)

· · ·

+

Ip −
pA∑
j=1

AD,T,j

−1
pA∑
j=1

AD,T,j (VT − VT −j) .

For s ̸= T 0
r (r = 1, . . . , m0) local stationarity implies AD,s+1,j = AD,s,j + O (1/T ). There are only a finite

number of breaks T 0
r (r = 1, . . . , m0) so that (S.36) is equal toIp −

pA∑
j=1

AD,pA+1,j

−1

AD,pA+1,pA
V1 +

Ip −
pA∑
j=1

AD,T,j

AD,T,pA
VT

+
m0∑
r=1

Ip −
pA∑
j=1

AD,T 0
r ,j

−1
pA∑
j=1

(
AD,T 0

r ,j − AD,T 0
r +1,j

)
VT 0

r

≜ CA,T .

It follows that

1
T

T∑
t=1

E (CA,T )

V ∗
t

Ip −
pA∑
j=1

AD,t,j

−1


′

→ 0.

Altogether, this implies J∗
T,D

P→ JT . Using Assumption 3.6 and simple manipulations, the second term
on the right-hand side of (S.2) is oP (1). Therefore,

Ĵpw,T − JT =
(
Ĵpw,T − J∗

T,D̂

)
+
(
J∗

T,D̂
− J∗

T,D

)
+
(
J∗

T,D − JT

)
= oP (1) , (S.37)

which concludes the proof of part (i).
Next, we move to part (ii). Given the decomposition (S.2), we have to show√

Tbθ1,T bθ2,T

(
Ĵpw,T − J∗

T,D̂

)
= OP (1) , (S.38)

S-14



prewhitened lrv estimation robust to nonstationarity

√
Tbθ1,T bθ2,T

(
J∗

T,D̂
− J∗

T,D

)
= oP (1) , (S.39)√

Tbθ1,T bθ2,T

(
J∗

T,D − JT

)
= oP (1) . (S.40)

Equation (S.38) follows from √
Tbθ1,T bθ2,T

(
Ĵ∗

T (bθ1,T , bθ2,T ) − J∗
T

)
= OP (1) , (S.41)√

Tbθ1,T bθ2,T

(
Ĵ∗

T

(
b̂∗

1,T , b̂∗
2,T

)
− Ĵ∗

T (bθ1,T , bθ2,T )
)

= oP (1) , (S.42)

since the presence of D̂s in V̂ ∗
D,s is irrelevant. Thus, Lemma S.B.3-S.B.4 yield (S.38). Given that√

Tbθ1,T bθ2,T /nT → 0, Assumption 3.6 and simple algebra yield (S.39). From the proof of part (i), it

is easy to see that the multiplication by the factor
√

Tbθ1,T bθ2,T in (S.40) does not change the fact that

this term is oP (1). Therefore, we conclude that T 8q/10(2q+1)(Ĵpw,T − JT ) = OP (1).
We now move to part (iii). The estimator ĴT,pw is actually a double kernel HAC estimator constructed

using observations {V̂D,s}, where the latter is SLS. Thus, using Theorem 3.2 and 5.1 in Casini (2023b)
and Assumption 3.6, we deduce that

lim
T →∞

MSE
(
Tbθ1,T bθ2,T , Ĵpw,T , JT , WT

)
= lim

T →∞
MSE

(
Tbθ1,T bθ2,T , J∗

T,D, JT , WT

)
. (S.43)

This implies that it is sufficient to determine the asymptotic MSE of J∗
T,D. Note that J∗

T,D is simply a
double kernel HAC estimator constructed using observations {V ∗

D,t}. It follows that {V ∗
D,t} is SLS and

thus it satisfies the conditions of Theorem 3.2 and 5.1 in Casini (2023b). The same argument in Casini
(2023b) now with reference to Theorem 3.1-(i,ii) yields

lim
T →∞

MSE
(
Tbθ1,T bθ2,T , J∗

T,D, JT , WT

)
= 4π2

[
γθK2

1,qvec
(� 1

0
f

∗(q)
D (u, 0) du

)′

Wvec
(� 1

0
f

∗(q)
D (u, 0) du

)]

+
�

K2
1 (y) dy

�
K2

2 (x) dx tr
[
W
(
Ip2

β
− Cpp

)(� 1

0
f∗

D (u, 0) du

)
⊗
(� 1

0
f∗

D (v, 0) dv

)]
.

The latter relation and (S.43) conclude the proof. □

S.C Proofs of the Results in Section 4

In the proofs below involving ĉT (u, k) , c̃T (u, k) and c (u, k), we assume k ≥ 0 unless otherwise stated.
The proofs for the case k < 0 are similar and omitted.

S.C.1 Proof of Theorem 4.1

We first present upper and lower bounds on the asymptotic variance of J̃T . Let VarP (·) denote the
variance of · under P.
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Lemma S.C.1. Suppose that Assumption 4.1 holds, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT /T → 0 and
1/Tb1,T b2,T → 0. We have for all a ∈ Rpβ :

(i) for any K1 (·) ∈ K1,

lim
T →∞

sup
P∈P U

Tb1,T b2,T VarP

(
a′J̃T a

)
= lim

T →∞
Tb1,T b2,T VarPU

(
a′J̃T a

)

= 8π2
�

K2
1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPU ,a (u, 0) du

)2

;

(ii) for any K1 (·) ∈ K1,+,

lim
T →∞

inf
P∈P L

Tb1,T b2,T VarP

(
a′J̃T a

)
= lim

T →∞
Tb1,T b2,T VarPL

(
a′J̃T a

)
= 8π2

�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPL,a (u, 0) du

)2

.

Proof of Lemma S.C.1. Let Zt = a′Vt and cP,T (rnT /T, k) = EP c̃T (rnT /T, k). For any k ≥ 0 and any
r = 0, . . . , ⌊T/nT ⌋,

a′ (c̃T (rnT /T, k) − cP,T (rnT /T, k)
)

a

=

(Tb2,T )−1
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
(ZsZs−k − EP (ZsZs−k))

 .

For any k, j ≥ 0 and any r, b = 0, . . . , ⌊T/nT ⌋,

sup
P∈PU

∣∣EP
(
a′ (c̃T (rnT /T, k) − cP,T (rnT /T, k)

)
aa′ (c̃T (bnT /T, j) − cP,T (bnT /T, j)

)
a
)∣∣

=
∣∣∣∣∣(Tb2,T )−2

T∑
s=k+1

T∑
l=j+1

K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
K∗

2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)

× (EP (ZsZs−kZlZ l−j) − EP (ZsZs−k)EP (ZlZ l−j))
∣∣∣∣∣.

By definition of the fourth-order cumulant and by definition of P U ,

sup
P∈P U

∣∣EP
(
a′ (c̃T (rnT /T, k) − cP,T (rnT /T, k)

)
aa′ (c̃T (bnT /T, j) − cP,T (bnT /T, j)

)
a
)∣∣

=
∣∣∣∣∣(Tb2,T )−2

T∑
s=k+1

T∑
l=j+1

K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
K∗

2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)

×
(
EP (ZsZs−k)EP (ZlZ l−j) + EP (ZsZ l)EP (Zs−kZ l−j) + EP (ZsZ l−j)E (Zs−kZ l)

+ κP,aV,s (−k, l − s, l − j − s) − EP (ZsZs−k)E (ZlZ l−j)
∣∣∣∣∣
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≤ (Tb2,T )−2
T∑

s=k+1

T∑
l=j+1

K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
K∗

2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)

×
(

a′ΓPU ,s/T (s − l) aa′ΓPU ,s−k (s − k − l + j) a + a′ΓPU ,s/T (s − l + j) aa′ΓPU ,s−k (s − k − l) a

+ κ∗
s (−k, l − s, l − j − s)

)
≤ EPU

(
a′ (c̃T (rnT /T, k) − cPU ,T (rnT /T, k)

)
aa′ (c̃T (bnT /T, j) − cPU ,T (bnT /T, j)

)
a
)

(S.1)

+ 2
(

1
Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
K∗

2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)
× κ∗

s (−k, l − s, l − j − s) ,

where the last inequality holds by reversing the argument of the equality and the first inequality.
By a similar argument,

inf
P∈P L

∣∣EP
(
a′ (c̃T (rnT /T, k) − cP,T (rnT /T, k)

)
aa′ (c̃T (bnT /T, j) − cP,T (bnT /T, j)

)
a
)∣∣

≥ EPL

(
a′ (c̃T (rnT /T, k) − cPL,T (rnT /T, k)

)
aa′ (c̃T (bnT /T, j) − cPL,T (bnT /T, j)

)
a
)

(S.2)

+ 2
(

1
Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

κ∗
s (−k, l − s, l − j − s) .

Let J̃T,K be the same as J̃T but with |K1 (·)| and |K2 (·)| in place of K1 (·) and K2 (·), respectively. Note
that K1 (·) ∈ K1 (K2 (·) ∈ K2) implies |K1 (·)| ∈ K1 (|K2 (·)| ∈ K2). We have

lim
T →∞

Tb1,T b2,T VarPU

(
a′J̃T a

)
≤ lim

T →∞
sup

P∈PU

Tb1,T b2,T VarP

(
a′J̃T a

)
= lim

T →∞
sup

P∈PU

Tb1,T b2,T

T −1∑
k=−T +1

T −1∑
j=−T +1

K1 (b1,T k) K1 (b1,T j)

×
(

nT

T

)2 T/nT∑
r=0

T/nT∑
b=0

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

K∗
2

(
(rnT + 1) − (s + k/2)

Tb2,T

)
K∗

2

(
(bnT + 1) − (l + j/2)

Tb2,T

)

× EP

(
a′
(
Γs/T (k) − EP

(
Γs/T (k)

))
aa′

(
Γl/T (k) − EP

(
Γl/T (k)

))
a
)

≤ lim
T →∞

Tb1,T b2,T

T −1∑
k=−T +1

T −1∑
j=−T +1

|K1 (b1,T k) K1 (b1,T j)|

×
(

nT

T

)2 T/nT∑
r=0

T/nT∑
b=0

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

∣∣∣∣∣K∗
2

(
(rnT + 1) − (s + k/2)

Tb2,T

)
K∗

2

(
(bnT + 1) − (l + j/2)

Tb2,T

)∣∣∣∣∣
× EPU

(
a′
(
Γs/T (k) − EPU

(
Γs/T (k)

))
aa′

(
Γs/T (k) − EPU

(
Γs/T (k)

))
a
)
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+ 2 lim
T →∞

Tb1,T b2,T

T −1∑
k=−T +1

T −1∑
j=−T +1

|K1 (b1,T k) K1 (b1,T j)|
(

nT

T

)2 T/nT∑
r=0

T/nT∑
b=0

(
1

Tb2,T

)2

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

∣∣∣∣∣K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
K∗

2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)∣∣∣∣∣
× κ∗

s (−k, l − s, l − j − s)

= lim
T →∞

Tb1,T b2,T VarPU

(
a′J̃T,Ka

)
, (S.3)

where the last inequality uses (S.1). For K1 (·) ∈ K1,+, we can rely on an argument analogous to that of
(S.3) using (S.2) in place of (S.1) to yield,

lim
T →∞

Tb1,T b2,T VarPL

(
a′J̃T a

)
≥ lim

T →∞
inf

P∈P L

Tb1,T b2,T VarP

(
a′J̃T a

)
≥ lim

T →∞
Tb1,T b2,T VarPL

(
a′J̃T,Ka

)
. (S.4)

By Theorem 3.1 in Casini (2023b),

lim
T →∞

Tb1,T b2,T VarPw

(
a′J̃T a

)
= 8π2

�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPw,a (u, 0) du

)2

, and (S.5)

lim
T →∞

Tb1,T b2,T VarPw

(
a′J̃K,T a

)
= 8π2

�
|K1 (y)|2 dy

� 1

0
|K2 (x)|2 dx

(� 1

0
fPw,a (u, 0) du

)2

, (S.6)

for w = L, U . Equations (S.3), (S.5) and (S.6) combine to establish part (i) of the lemma:

8π2
�

K2
1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPU ,a (u, 0) du

)2

= lim
T →∞

Tb1,T b2,T VarPU

(
a′J̃T a

)
≤ lim

T →∞
sup

P∈P U

Tb1,T b2,T VarP

(
a′J̃T a

)
≤ lim

T →∞
Tb1,T b2,T VarPU

(
a′J̃T,Ka

)
= 8π2

�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

(� 1

0
fPU ,a (u, 0) du

)2

.

By a similar reasoning, equations (S.4) and (S.5) yield part (ii). □

Upper and lower bounds on the asymptotic bias of J̃T are given in the following lemma. Let JPw,T

be equal to JP,T but with the expectation EP replaced by EPw , w = U, L.

Lemma S.C.2. Let Assumption 4.1 hold, K1 (·) ∈ K1, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT /T → 0,
1/Tb1,T b2,T → 0, 1/Tbq

1,T b2,T → 0, nT /Tbq
1,T → 0 and b2

2,T /bq
1,T → 0 for some q ∈ [0, ∞) for which

K1,q, |
� 1

0 f
(q)
Pw,a (u, 0) du| ∈ [0, ∞), w = U, L. We have for all a ∈ Rpβ :
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(i) lim
T →∞

sup
P∈P U

b−q
1,T

∣∣∣EPa′J̃T a − a′JP,T a
∣∣∣ = lim

T →∞
b−q

1,T

∣∣∣EPU
a′J̃T a − a′JPU ,T a

∣∣∣ = 2πK1,qf
(q)
PU ,a and

(ii) lim
T →∞

inf
P∈P L

b−q
1,T

∣∣∣EPa′J̃T a − a′JP,T a
∣∣∣ = lim

T →∞
b−q

1,T

∣∣∣EPL
a′J̃T a − a′JPL,T a

∣∣∣ = 2πK1,qf
(q)
PL,a.

Proof of Lemma S.C.2. We begin with part (i). We have,

lim
T →∞

sup
P∈P U

b−q
1,T

∣∣∣EPa′J̃T a − a′JP,T a
∣∣∣

= lim
T →∞

sup
P∈P U

b−q
1,T

∣∣∣∣∣∣
T −1∑

k=−T +1
K1 (b1,T k) a′EP

(
Γ̃ (k)

)
a −

T −1∑
k=−T +1

a′ΓP,T (k) a

∣∣∣∣∣∣
= lim

T →∞
sup

P∈P U

b−q
1,T

∣∣∣∣∣∣
T −1∑

k=−T +1
K1 (b1,T k) a′EP

(
Γ̃ (k)

)
a −

T −1∑
k=−T +1

K1 (b1,T k) a′ΓP,T (k) a

+
T −1∑

k=−T +1
K1 (b1,T k) a′ΓP,T (k) a −

T −1∑
k=−T +1

a′ΓP,T (k) a

∣∣∣∣∣∣
= lim

T →∞
sup

P∈P U

b−q
1,T

∣∣G1,P,T + G2,P,T

∣∣ .
Let us first consider G1,P,T . Note that for k ≥ 0,

a′
(
EP

(
Γ̃ (k)

)
− ΓP,T (k)

)
a

=

nT

T

⌊T/nT ⌋∑
r=0

T∑
s=k+1

T −1
(

b−1
2,T K2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
− 1

)
a′EP

(
VsV ′

s−k

)
a

 .

Thus,

sup
P∈P U

∣∣∣a′
(
EP

(
Γ̃ (k)

)
− ΓP,T (k)

)
a
∣∣∣

≤ |nT

T

⌊T/nT ⌋∑
r=0

T∑
s=k+1

T −1
(

b−1
2,T K2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
− 1

)
a′EPU

(
VsV ′

s−k

)
a|.

By Lemma S.A.1 in Casini (2023b), EPU
(VsV ′

s−k) = c (s/T, k) + O
(
T −1) uniformly in s and k. By the

proof of Lemma S.A.8 in Casini (2023b),

sup
P∈P U

∣∣∣a′
(
EP

(
Γ̃ (k)

)
− ΓP,T (k)

)
a
∣∣∣

≤
∣∣∣∣nT

T

⌊T/nT ⌋∑
r=0

T∑
s=k+1

T −1
(

(b2,T )−1 K2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
− 1

)
a′EPU

(
VsV ′

s−k

)
a

∣∣∣∣
= O

(
nT

T

)
+
∣∣∣∣∣12b2

2,T

� 1

0
x2K2 (x) dx

� 1

0
a′
(

∂2

∂2u
c (u, k)

)
adu

∣∣∣∣∣+ ∆f (0) O
(
b2

2,T

)
+ O

(
1

Tb2,T

)
.
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It then follows that lim
T →∞

sup
P∈P U

b−q
1,T |G1,P,T | = 0 given the conditions nT /Tbq

1,T → 0 and b2
2,T /bq

1,T → 0.

Next, given that 1 − K1 (b1,T k) ≥ 0,

lim
T →∞

sup
P∈P U

b−q
1,T

∣∣G2,P,T

∣∣
= lim

T →∞
sup

P∈P U

b−q
1,T

∣∣∣∣∣∣
T −1∑

k=−T +1
(K1 (b1,T k) − 1) a′ΓP,T (k) a

∣∣∣∣∣∣
= lim

T →∞
b−q

1,T

T −1∑
k=−T +1

(1 − K1 (b1,T k)) a′EPU

(
Γ̃ (k)

)
a.

Write the right-hand side above as,

lim
T →∞

b−q
1,T

T −1∑
k=−T +1

(1 − K1 (b1,T k)) a′
(
EPU

(
Γ̃ (k)

)
−
� 1

0
cPU

(u, k) du

)
a

+ lim
T →∞

b−q
1,T

T −1∑
k=−T +1

(1 − K1 (b1,T k)) a′
(� 1

0
cPU

(u, k) du

)
a. (S.7)

By Lemma S.A.1 in Casini (2023b), the first term above is less than,

lim
T →∞

b−q
1,T

T −1∑
k=−T +1

(1 − K1 (b1,T k)) O
(
T −1

)
= 0. (S.8)

Thus, it remains to consider the second term of (S.7). Let w (x) = (1 − K1 (x)) / |x|q for x ̸= 0 and
w (x) = K1,q for x = 0. The following properties hold: w (x) → K1,q as x → 0; w (·) is non-negative and
bounded. The latter property implies that there exists some constant C < ∞ such that w (x) ≤ C for

all x ∈ R. Recall that |
� 1

0 f
(q)
Pw,a (u, 0) du| ∈ [0, ∞), w = U, L. Hence, given any ε > 0, we can choose a

T̊ < ∞ such that
� 1

0
∑∞

k=T̊ +1 |k|q (a′ΓPU ,u (k) a)du < ε/ (4C). Then, using (S.8), we have

lim
T →∞

sup
P∈P U

b−q
1,T

∣∣∣G2,T − 2πK1,qf
(q)
U,a

∣∣∣
≤ lim sup

T →∞

T̊∑
k=−T̊

|w (b1,T k) − K1,q| |k|q a′
(� 1

0
c (u, k) du

)
a

+ 2 lim sup
T →∞

T∑
k=−T̊ +1

|w (b1,T k) − K1,q| |k|q a′
(� 1

0
c (u, k) du

)
a

≤ ε.

This concludes the proof of part (i). The proof of part (ii) is identical to that of part (i) except that

sup
P∈P U

, ΓPU ,u and f
(q)
PU ,a are replaced by inf

P∈P L

, ΓPL,u and f
(q)
PL,a. □

Proof of Theorem 4.1. Parts (i) and (ii) of the theorem follow from Lemma S.C.1-(i) and Lemma S.C.2-(i),
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and Lemma S.C.1-(ii) and Lemma S.C.2-(ii), respectively. □

S.C.2 Proof of Theorem 4.2

Lemma S.C.1-S.C.2 [with q = 0 in part (ii)] implies J̃T − JP,T = oP (1). Noting that ĴT − J̃T = oP (1) if

and only if a′ĴT a−a′J̃T a = oP (1) for arbitrary a ∈ Rp we shall provide the proof only for the scalar case.
We first show that

√
Tb1,T (ĴT − J̃T ) = OP (1) under Assumption 3.2. Let J̃T (β) denote the estimator

that uses {Vt (β)}. A mean-value expansion of J̃T (β̂) (= ĴT ) about β0 yields,

√
Tb1,T

(
ĴT − J̃T

)
= b1,T

T −1∑
k=−T +1

K1 (b1,T k) ∂

∂β′ Γ̂ (k) |β=β̄

√
T
(
β̂ − β0

)
, (S.9)

for some β̄ on the line segment joining β̂ and β0. We have for k ≥ 0 (the case k < 0 is similar and omitted)
(S.5)-(S.6). It follows that (S.9) is

b1,T

T −1∑
k=−T +1

K1 (b1,T k) ∂

∂β′ Γ̂ (k) |β=β̄

√
T
(
β̂ − β0

)

≤ b1,T

T −1∑
k=−T +1

K1 (b1,T k) nT

T

T/nT∑
r=0

OP (1) OP (1)

= OP (1) ,

where we have used b1,T
∑T −1

k=−T +1 |K1(b1,T k)| →
�

|K1 (x) |dx < ∞. Given
√

Tb1,T → ∞, this concludes
the proof of Theorem 4.2-(i).

Next, we show that
√

Tb1,T (ĴT − J̃T ) = oP (1) under the assumptions of Theorem 4.2-(ii). A
second-order Taylor expansion yields√

Tb1,T

(
ĴT − J̃T

)
=
[√

b1,T
∂

∂β′ J̃T (β0)
]√

T
(
β̂ − β0

)
+ 1

2
√

T
(
β̂ − β0

)′
[√

b1,T
∂2

∂β∂β′ J̃T

(
β
)

/
√

T

]
√

T
(
β̂ − β0

)
≜ G′

T

√
T
(
β̂ − β0

)
+ 1

2
√

T
(
β̂ − β0

)′
HT

√
T
(
β̂ − β0

)
.

We can use the same argument as in (S.5) but now using Assumption 4.3-(ii), sot that∥∥∥∥ ∂2

∂β∂β′ ĉ (rnT /T, k)
∥∥∥∥∣∣∣∣

β=β̄

=

∥∥∥∥∥∥(Tb2,T )−1
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)(
∂2

∂β∂β′ Vs (β) V s−k (β)
)∥∥∥∥∥∥
∣∣∣∣
β=β̄

= OP (1) ,
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and thus,

∥HT ∥ ≤
(

b1,T

T

)1/2 T −1∑
k=−T +1

|K1 (b1,T k)| sup
β∈Θ

∥∥∥∥∥ ∂2

∂β∂β′ Γ̂ (k)
∥∥∥∥∥

≤
(

b1,T

T

)1/2 T −1∑
k=−T +1

|K1 (b1,T k)| OP (1)

≤
(

1
Tb1,T

)1/2

b1,T

T −1∑
k=−T +1

|K1 (b1,T k)| OP (1) = oP (1) ,

since Tb1,T → ∞. Next, we show that GT = oP (1). We follow the argument in the last paragraph

of p. 852 of Andrews (1991). We apply Theorem 4.2-(i,ii) to J̃T where the latter is constructed using
(V ′

t , ∂Vt/∂β′ − EP (∂Vt/∂β′))′ rather than just with Vt. The first row and column of the off-diagonal
elements of this J̃T are now

A1 ≜
T −1∑

k=−T +1
K1 (b1,T k) nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
Vs

(
∂

∂β
V s−k − EP

(
∂

∂β
V s

))

A2 ≜
T −1∑

k=−T +1
K1 (b1,T k) nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)(
∂

∂β
V s − EP

(
∂

∂β
V s

))
Vs−k,

which are both OP (1) by Theorem 4.1. Note that

GT ≤
√

b1,T (A1 + A2) +
√

b1,T

T −1∑
k=−T +1

|K1 (b1,T k)| nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗

2

(
((r + 1) nT − (s + k/2)) /T

b2,T

) ∣∣∣∣(Vs + Vs−k)EP

(
∂

∂β
V s

)∣∣∣∣
≜
√

b1,T (A1 + A2) + A3 sup
1≤s≤T

∣∣∣∣EP

(
∂

∂β
V s

)∣∣∣∣ .
It remains to show that A3 is oP (1) . We have,

EP

(
A2

3

)
≤ b1,T

T −1∑
k=−T +1

T −1∑
j=−T +1

|K1 (b1,T k) K1 (b1,T j)| 4
(

nT

T

)2 T/nT∑
r=0

T/nT∑
b=0

× 1
Tb2,T

1
Tb2,T

T∑
s=1

T∑
l=1

K∗
2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
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× K∗
2

(
((b + 1) nT − (l + j/2)) /T

b2,T

)
|EP (VsVl)| .

Since P ∈ PU , |EP(VsVl)| ≤ |ΓPU ,s/T (l − s)|. Given
∑∞

h=−∞ supu∈[0, 1] |cPU
(u, h) | < ∞, we have

EP

(
A2

3

)
≤ 1

Tb1,T b2,T

b1,T

T −1∑
k=−T +1

|K1 (b1,T k)|

2 � 1

0
K2

2 (x) dx

� 1

0

∞∑
h=−∞

|cPU
(u, h)| du = o (1) ,

(S.10)

from which it follows that GT = oP (1) and so
√

Tb1,T (ĴT − J̃T ) = oP (1). The latter concludes the proof
of part (ii) because

√
Tb1,T b2,T (J̃T − JT ) = OP (1) by Theorem 4.1.

Let us consider part (iii). Let GT = a′ĴT a − a′J̃T a. We have,

lim
T →∞

sup
P∈P U

Tb1,T b2,T

∣∣∣MSEP

(
a′ĴT a

)
− MSEP

(
a′J̃T a

)∣∣∣ (S.11)

= lim
T →∞

sup
P∈P U

Tb1,T b2,T

∣∣∣2EP

(
a′J̃T a − a′JP,T a

)
GT + EP

(
G

2
T

)∣∣∣
≤ 2 lim

T →∞

(
sup

P∈P U

Tb1,T b2,T MSEP

(
a′J̃T a

))1/2(
sup

P∈P U

Tb1,T b2,TEP

(
G

2
T

))1/2

+ lim
T →∞

sup
P∈P U

Tb1,T b2,TEP

(
G

2
T

)
.

The right-hand side above equals zero if (a) limT →∞ supP∈P U
Tb1,T b2,TEP(G2

T ) = 0 and (b) lim supT →∞
supP∈P U

Tb1,T b2,T MSEP(a′J̃T a) < ∞. Result (b) follows by Lemma S.C.1-(i). A second-order expansion
yields,

GT =
[

∂

∂β
a′J̃T (β0) a

] (
β̂ − β0

)
+ 1

2
(
β̂ − β0

)′
[

∂2

∂β∂β′ a
′J̃T

(
β
)

a

] (
β̂ − β0

)
= G1,T + G2,T , (S.12)

where β lies on the line segment joining β̂ and β0. Note that EP(G2
T ) = EP(G2

1,T ) + EP(G2
2,T ) +

2EP(G1,T G2,T ). Thus, using Assumption 4.4,

sup
P∈P U

Tb1,T b2,TEP

(
G

2
1,T

)
(S.13)

≤ Tb1,T b2,T p2 max
r≤p

sup
P∈P U

EP

(
∂

∂β(r) a′J̃T (β0) a
(
β̂(r) − β̂

(r)
0

))2

≤ 1
Tb1,T

p2 max
r≤p

sup
P∈P U

EP

(
H

(r)
1,T

√
T
(
β̂(r) − β̂

(r)
0

))2

→ 0,

and

sup
P∈P U

Tb1,T b2,TEP

(
G

2
2,T

)
(S.14)
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≤ 1
4Tb1,T b2,T p2 max

r≤p
sup

P∈P U

EP

(∣∣∣∣β̂(r) − β
(r)
0

∣∣∣∣ ∂2

∂β(r)∂β(r)′ a
′J̃T

(
β
)

a

∣∣∣∣β̂(r) − β
(r)
0

∣∣∣∣
)2

≤ b2,T

Tb1,T
p2 max

r≤p
sup

P∈P U

EP

(√
T

∣∣∣∣β̂(r) − β
(r)
0

∣∣∣∣H(r)
2,T

√
T

∣∣∣∣β̂(r) − β
(r)
0

∣∣∣∣)2

→ 0.

Equations (S.12) to (S.14) and the Cauchy-Schwartz inequality yield result (a) and thus the desired result
of the theorem. □

S.C.3 Proof of Proposition 4.1

For K2 (·) ∈ K2, using the definition of PU and the arguments in (S.1),

VarPU

(
a′c̃T (u0, k) a

)
≤ sup

P∈P U

VarP
(
a′c̃T (u0, k) a

)

= sup
P∈P U

EP


(Tb2,T )−1

T∑
s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
a′
(
ṼsṼ ′

s−k − EP

(
ṼsṼ ′

s−k

))
a

2


= sup
P∈P U

EP (Tb2,T )−2
T∑

s=k+1

T∑
l=j+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
K∗

2

(
u0 − (l + j/2) /T

b2,T

)

× a′
(
ṼsṼ ′

s−k − EP

(
ṼsṼ ′

s−k

))
aa′

(
ṼlṼ

′
l−j − EP

(
ṼlṼ

′
l−j

))
a

≤ (Tb2,T )−2
T∑

s=k+1

T∑
l=j+1

∣∣∣∣∣K∗
2

(
u0 − (s − k/2) /T

b2,T

)
K∗

2

(
u0 − (l − j/2) /T

b2,T

)∣∣∣∣∣
× (a′ΓU,s/T (s − l) aa′ΓU,s−k (s − k − l + j) a

+ a′ΓU,s/T (s − l + j) aa′ΓU,s−k (s − k − l) a + κPU ,aV,s (j, l − s, l − j − s))
≤ EPU

(
a′ (cT (u0, k) − cPU ,T (u0, k)

)
aa′ (cT (u0, j) − cPU T (u0, j)) a

)
+ 2

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

∣∣∣∣∣K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)
K∗

2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)∣∣∣∣∣
× κPU ,aV,s (j, l − s, l − j − s)

= VarPU

(
a′cT (u0, k) a

)
, (S.15)

where cT (u0, k) (resp. cPU ,T (u0, k)) is equal to c̃T (u0, k) (resp. cPU ,T (u0, k)) but with |K2 (·) | in place
of K2 (·). Since K2 (·) ≥ 0 by definition, Proposition 3.1 in Casini (2023b) implies

VarPU

(
a′c̃T (u0, k) a

)
= 1

Tb2,T

� 1

0
K2

2 (x) dx
∞∑

l=−∞
a′
(
cPU

(u0, l) [cPU
(u0, l) + cPU

(u0, l + 2k)]′
)

a
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+ 1
Tb2,T

� 1

0
K2

2 (x) dx
∞∑

h1=−∞

∞∑
h2=−∞

κPU ,aV,T u0 (h1, 0, h2)

+ o
(
b4

2,T

)
+ O (1/ (b2,T T ))

= VarPU

(
a′cT (u0, k) a

)
. (S.16)

Next, we discuss the bias. We have,

sup
P∈P U,2

∣∣EP
(
a′c̃T (u0, k) a − a′cP (u0, k) a

)∣∣
= lim

T →∞
sup

P∈P U,2

∣∣∣∣∣∣(Tb2,T )−1
T∑

s=k+1
K2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
a′EP

(
VsV ′

s−k

)
a − a′cP (u0, k) a

∣∣∣∣∣∣
≤ 1

2b2
2,T

� 1

0
x2K2 (x) dx

� 1

0

∣∣∣∣∣a′ ∂2

∂2u
cPU

(u0, k) a

∣∣∣∣∣ du + o
(
b2

2,T

)
+ O

(
1

Tb2,T

)
, (S.17)

where the inequality above follows from (4.2). Combining (S.16)-(S.17), we have that supP∈P U,2 MSE(a′c̃T

(u0, k)a) is equal to the right-hand side of (4.3). The same result holds for ĉT (u0, k) since the proof of
Theorem 4.2 and P U,2 ⊆ P U imply that supP∈P U,2 MSEP(a′ĉT (u0, k)a) is asymptotically equivalent to
supP∈P U,2 MSEP(a′c̃T (u0, k)a). This gives (4.3). The form for the optimal b2,T (·) and K2 (·) follow from
the same argument as in Proposition 4.1 in Casini (2023b). □

S.C.4 Proof of Theorem 4.3

If Tb2q+1
1,T b2,T → γ ∈ (0, ∞) for some q ∈ [0, ∞) for which K1,q, |

� 1
0 f

(q)
U,a (u, 0) du| ∈ [0, ∞), then by

Lemma S.C.1-(i) and Lemma S.C.2-(i),

lim
T →∞

Tb1,T b2,T sup
P∈P U

MSEP

(
a′ĴT (b1,T,K1) a

)

= 4π2

γK2
1,q

(� 1

0
f

(q)
U,a (u, 0) du

)2

+
�

K2
1 (y) dy

� 1

0
(K2,0 (x))2 dx

(� 1

0
fU,a (u, 0) du

)2
 .

Assume q = 2 so that Tb5
1,T b2,T → γ. Then, Tb5

1,T,K1
b2,T → γ/(

�
K2

1 (y) dy)5 and

Tb1,T b2,T = Tb1,T,K1b2,T

�
K2

1 (y) dy.

Therefore, given K1,2 < ∞,

lim inf
T →∞

Tb1,T b2,T

(
sup

P∈P U

MSE
(
a′ĴT (b1,T,K1) a

)
− sup

P∈P U

MSE
(
a′ĴQS

T (b1,T ) a
))

= 4γπ2
(� 1

0
f

(q)
U,a (u, 0) du

)2 � 1

0
(K2 (x))2 dx

[
K2

1,2

(�
K2

1 (y) dy

)4
−
(
KQS

1,2

)2
]

.

S-25



alessandro casini and pierre perron

The optimality of KQS
1 then follows from the same argument as in the proof of Theorem 4.1 in Casini

(2023b). □

S.C.5 Proof of Theorem 4.4

Suppose γ ∈ (0, ∞). Under the conditions of the theorem,

(Tb2,T )2q/(2q+1) = (γ−1/(2q+1) + o (1))Tb1,T b2,T .

By Theorem 4.1-(i),

lim inf
T →∞

(
Tb2,T

)2q/(2q+1)
sup

P∈P U (ϕ(q))
EPL

(
J̃T (b1,T ) , JP,T

)
(S.18)

= lim inf
T →∞

(
γ−1/(2q+1) + o (1)

)
Tb1,T b2,T sup

P∈P U (ϕ)

p∑
r=1

wrMSEP

(
a(r)′J̃T (b1,T ) a(r)

)

= γ−1/(2q+1)4π2
[ p∑

r=1
wr

(
γK2

1,q

(� 1

0
f

(q)
PU ,a(r) (u, 0) du

)2

+ 2
�

K2
1 (x) dx

� 1

0
K2

2 (y) dy

(� 1

0
fPU ,a(r) (u, 0) du

)2)]
.

The right-hand side above is minimized at γopt = (2qK2
1,qϕ (q))−1(

�
K2

1 (y) dy
� 1

0 K2
2 (x) dx). Note that

γopt > 0 provided that fPU ,a(r) (u, 0) > 0 and f
(q)
PU ,a(r) (u, 0) > 0 for some u ∈ [0, 1] and some r for

which wr > 0. Hence, {b1,T } is optimal in the sense that Tb2q+1
1,T b2,T → γopt if and only if b1,T =

bopt
1,T + o((Tb2,T )−1/(2q+1)). In virtue of Theorem 4.2-(iii), eq. (S.18) holds also when J̃T (b1,T ) is replaced

by ĴT (b1,T ). Thus, the final assertion of the theorem follows. □

S.C.6 Proof of Theorem 4.5

The proof of the theorem uses the following lemmas.

Lemma S.C.3. Let K1 (·) , K2 (·), {b1,θP ,T }, {SP,T }, ϕ̂ (·) and q be as in Theorem 4.5. Then, for all
a ∈ Rp, (i)

T 8q/5(2q+1) sup
P∈P U,3

EP

 T −1∑
k=SP,T +1

K1
(
b̂1,T k

)
a′Γ̂ (k) a

2

→ 0;

(ii)

T 8q/5(2q+1) sup
P∈P U,3

EP

SP,T∑
k=1

(
K1

(
b̂1,T k

)
− K1 (b1,θP ,T k)

)
a′Γ̂ (k) a

2

→ 0.

S-26



prewhitened lrv estimation robust to nonstationarity

Proof of Lemma S.C.3. First we prove part (i). We have,

(
T 8q/5(2q+1) sup

P∈P U,3

EP

 T −1∑
k=SP,T +1

K1
(
b̂1,T k

)
a′Γ̂ (k) a

2)1/2

(S.19)

≤

T 8q/5(2q+1) sup
P∈P U,3

EP

 T −1∑
k=SP,T +1

K1
(
b̂1,T k

) (
a′Γ̂ (k) a − a′ΓP,T a

)2


1/2

+

T 8q/5(2q+1) sup
P∈P U,3

EP

 T −1∑
k=SP,T +1

K1
(
b̂1,T k

)
a′ΓP,T a

2


1/2

≜ B1,T + B2,T .

Since |K1 (·) | ≤ 1 and |a′ΓP,T (k) a| ≤ a′(
� 1

0 ΓPU ,u (k) du)a, we obtain

B2,T ≤

T 8q/5(2q+1) sup
P∈P U,3

EP

 T −1∑
k=SP,T +1

∣∣∣K1
(
b̂1,T k

)∣∣∣ a′
(� 1

0
ΓPU ,u (k) du

)
a

2


1/2

(S.20)

≤ T 8q/10(2q+1) sup
P∈P U,3

T −1∑
k=SP,T +1

sup
u∈[0, 1]

a′
(� 1

0
ΓPU ,u (k) du

)
a

≤ T 8q/10(2q+1) sup
P∈P U,3

T −1∑
k=SP,T +1

C3k−l

≤ C3,1T 8q/10(2q+1) sup
P∈P U,3

� ∞

SP,T

k−ldk

≤ C3,1T 8q/10(2q+1)S1−l
T,P

= T 8q/10(2q+1)+4r(1−l)/5(2q+1) → 0,

for some constant C3,1 ∈ (0, ∞), using the fact that infP∈P U,3 ϕP (·) ≥ ϕ > 0 and q/ (l − 1) < r. Let

B1,1,T =

T 8q/5(2q+1) sup
P∈P U,3

EP

 ⌊DT T 1/2⌋∑
k=SP,T +1

K1
(
b̂1,T k

)
a′ΓP,T a


2

1/2

B1,2,T =

T 8q/5(2q+1) sup
P∈P U,3

EP

 T∑
k=⌊DT T 1/2⌋+1

K1
(
b̂1,T k

)
a′ΓP,T a


2

1/2

.
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We have

B2
1,1,T ≤ T 8q/5(2q+1)−4/5 sup

P∈P U,3

EP

 ⌊DT T 1/2⌋∑
k=SP,T +1

C1
(
b̂1,T k

)−b
√

Tb
opt
2,T

∣∣∣a′Γ̂ (k) a − a′ΓP,T (k) a
∣∣∣


2

(S.21)

≤ T 8q/5(2q+1)−4/5+8b/5(2q+1) sup
P∈P U,3

EP

 ⌊DT T 1/2⌋∑
k=SP,T +1

C1k−b
√

Tb
opt
2,T

∣∣∣a′Γ̂ (k) a − a′ΓP,T (k) a
∣∣∣


2

×
(

2qK2
1,qϕ̂ (q) /(

�
K2

1 (y) dy

� 1

0
K2

2 (x) dx)
)2b/(2q+1)

≤ C1,2T 8q/5(2q+1)−4/5+8b/5(2q+1)

× sup
P∈PU,3

 ⌊DT T 1/2⌋∑
k=SP,T +1

⌊DT T 1/2⌋∑
j=SP,T +1

k−bj−bTbθ2,T

(
VarP

(
a′Γ̂ (k) a

)
VarP

(
a′Γ̂ (j) a

))1/2



≤ C1,2T 8q/5(2q+1)−4/5+8b/5(2q+1) sup
P∈P U,3


 ⌊DT T 1/2⌋∑

k=SP,T +1
k−b


2

Tb
opt
2,T

(
sup
k≥1

VarPU

(
a′Γ̂ (k) a

))

≤ C1,2T 8q/5(2q+1)−4/5+8b/5(2q+1) sup
P∈P U,3


 ⌊DT T 1/2⌋∑

k=SP,T +1
k−b


2O (1)

≤ C1,3T 8q/5(2q+1)−4/5+8b/5(2q+1)−8(b−1)r/5(2q+1) → 0,

for some constants 0 < C1,2, C1,3 < ∞, using the fact that ϕ̂ (q) ≤ ϕ < ∞, infP∈P U,3 ϕP ≥ ϕ > 0 and
r > 1.25. Using similar manipulations,

B2
1,2,T ≤ T 8q/5(2q+1)−4/5 sup

P∈P U,3

EP

 T∑
k=⌊DT T 1/2⌋+1

C1
(
b̂1,T k

)−b
√

Tb
opt
2,T

∣∣∣a′Γ̂ (k) a − a′ΓP,T (k) a
∣∣∣


2

(S.22)

≤ C1,2T 8q/5(2q+1)−4/5+8b/5(2q+1) sup
P∈P U,3


 T∑

k=⌊DT T 1/2⌋+1

k−b


2O (1)

≤ C1,3T 8q/5(2q+1)−4/5+8b/5(2q+1)−(b−1) → 0,

for some constants 0 < C1,2, C1,3 < ∞ and with q satisfying 8/q − 20q < 6. Equations (S.19)-(S.22)
combine to establish part (i). We now prove part (ii). Using the Lipschitz condition on K1 (·), we get

A1,T = T 8q/5(2q+1) sup
P∈P U,3

EP

SP,T∑
k=1

(
K1

(
b̂1,T k

)
− K1 (b1,θP ,T k)

)
a′Γ̂ (k) a

2

(S.23)
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≤ T 8q/5(2q+1) sup
P∈P U,3

EP

SP,T∑
k=1

C2
(
b̂1,T − b1,θP ,T

)
ka′Γ̂ (k) a

2

≤ C2,1T 8q/5(2q+1)−8/5(2q+1)ñ−1
T sup

P∈P U,3

EP

SP,T∑
k=1


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)

 ka′Γ̂ (k) a


2

≤ C2,1T 8q/5(2q+1)−8/5(2q+1)−6/10 sup
P∈P U,3

EP

SP,T∑
k=1


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)

 ka′Γ̂ (k) a


2

for some constant C2,1 ∈ (0, ∞), where ñT = (inf
{

n3,T /T,
√

n2,T

}
)2. Now decompose the right-hand

side above as follows,

A
1/2
1,T ≤

(
C2,1T 8q/5(2q+1)−8/5(2q+1)−6/10 sup

P∈P U,3

EP


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)


2

(S.24)

×

SP,T∑
k=1

k
(
a′Γ̂ (k) a − a′ΓP,T (k) a

)2)1/2

+
(

C2,1T 8q/5(2q+1)−8/5(2q+1)−6/10 sup
P∈P U,3

EP


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)


2

×

SP,T∑
k=1

ka′ΓP,T (k) a

2)1/2

= A1,1,T + A1,2,T .

where we have used the fact that n
10/6
2,T /T → [c2, ∞), n

10/6
3,T /T → [c3, ∞) with 0 < c2, c3 < ∞. Note that,

A2
1,1,T ≤ C2,1T 8q/5(2q+1)−8/5(2q+1)−3/5S4

P,T sup
P∈P U,3

EP


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)


2

(S.25)

×

 1
SP,T

SP,T∑
k=1

k

SP,T

(
a′Γ̂ (k) a − a′ΓP,T (k) a

)2

≤ C2,1T 8q/5(2q+1)−8/5(2q+1)−3/5+16r/5(2q+1)−4/5

×

 sup
P∈P U,3

EP


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)


4

1/2
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×

 sup
P∈P U,3

EP

 1
SP,T

SP,T∑
k=1

√
Tb

opt
2,T

(
a′Γ̂ (k) a − a′ΓP,T (k) a

)4


1/2

×
(

2qK2
1,qϕθ∗

P
(q) /

�
K2

1 (y) dy

� 1

0
K2

2 (x) dx

)4r/(2q+1)

→ 0,

for some constant C2,1 ∈ (0, ∞), since supP∈P U,3 ϕθ∗
P

< ∞ and r < 15/16 + 3q/8. In addition, we have

A2
1,2,T ≤ C2,1T 8q/5(2q+1)−8/5(2q+1)−3/5 sup

P∈P U,3

EP


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)


2

(S.26)

× sup
P∈P U,3

SP,T∑
k=1

ka′ΓP,T (k) a

2

≤ C2,1T 8q/5(2q+1)−8/5(2q+1)−3/5 sup
P∈P U,3

EP


√

ñT

(
ϕ̂ (q)1/(2q+1) − ϕθ∗

P
(q)1/(2q+1)

)
(
ϕ̂ (q) ϕθ∗

P
(q)
)1/(2q+1)


2

× sup
P∈P U,3

SP,T∑
k=1

k1−l

2

→ 0,

where we have used the definition of P U,3-(ii), q < 11/2 and l > 2 which implies that
∑∞

k=1 k1−l < ∞.
Equations (S.24)-(S.26) combine to establish part (ii) of the lemma. □

Proof of Theorem 4.5. Let || · ||P = (EP (·)2)1/2. For any constant J and any random variables Ĵ1 and
Ĵ2, the triangle inequality gives∥∥∥Ĵ1 − Ĵ2

∥∥∥
P

≥
∣∣∣∥∥∥Ĵ1 − J

∥∥∥
P

−
∥∥∥J − Ĵ2

∥∥∥
P

∣∣∣ . (S.27)

Hence, it suffices to show that

T 8q/5(2q+1) sup
P∈P U,3

∥∥∥a′ĴT

(
b̂1,T , b̂2,T

)
a − a′ĴT

(
b1,θP ,T , b

opt
2,T

)
a
∥∥∥2

P
→ 0. (S.28)

The latter follows from

T 8q/5(2q+1) sup
P∈P U,3

∥∥∥a′ĴT

(
b̂1,T , b̂2,T

)
a − a′ĴT

(
b1,θP ,T , b̂2,T

)
a
∥∥∥2

P
(S.29)

+ T 8q/5(2q+1) sup
P∈P U,3

∥∥∥a′ĴT

(
b1,θP ,T , b̂2,T

)
a − a′ĴT

(
b1,θP ,T , b

opt
2,T

)
a
∥∥∥2

P
→ 0.

Note that

a′ĴT

(
b̂1,T , b̂2,T

)
a − a′ĴT

(
b1,θP ,T , b̂2,T

)
a (S.30)
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= 2
T −1∑

k=SP,T +1

(
K1

(
b̂1,T k

)
− K1 (b1,θP ,T k)

)
a′Γ̂ (k) a

+ 2
SP,T∑
k=1

K1
(
b̂1,T k

)
a′Γ̂ (k) a − 2

SP,T∑
k=1

K1 (b1,θP ,T k) a′Γ̂ (k) a.

We can apply Lemma S.C.3-(ii) to the first term of (S.30) and Lemma S.C.3-(i) to second and third terms
(with {b1,θP ,T } in place of {b̂1,T } for the third term). It remains to show that the second summand of

(S.29) converges to zero. Let ĉθ2,T (rnT /T, k) denote the estimator that uses bopt
2,T (u) in place of b̂2,T (u) .

We have for k ≥ 0,

ĉT (rnT /T, k) − ĉθ2,T (rnT /T, k)

=
(
Tb

opt
2,T

)−1 T∑
s=k+1

(
K∗

2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K∗

2

(
((r + 1) nT − (s − k/2)) /T

bopt
2,T ((r + 1) nT /T )

))
V̂sV̂ s−k

+ OP
(
1/Tb

opt
2,T

)
. (S.31)

Given Assumption 3.5-(v) 4.5-(ii,iii) and using the delta method, we have for s ∈ {Tu−
⌊
Tb

opt
2,T

⌋
, . . . , Tu+⌊

Tb
opt
2,T

⌋
}:

K2

(
(Tu − (s − k/2)) /T

b̂2,T (u)

)
− K2

(
(Tu − (s − k/2)) /T

bopt
2,T (u)

)
(S.32)

≤ C4

∣∣∣∣∣Tu − (s − k/2)
T b̂2,T (u)

− Tu − (s − k/2)
Tbopt

2,T (u)

∣∣∣∣∣
≤ CT −4/5−2/5T 2/5

∣∣∣∣∣∣
(

D̂2 (u)
D̂1 (u)

)−1/5

−
(

D2 (u)
D1,θ (u)

)−1/5
∣∣∣∣∣∣ |Tu − (s − k/2)|

≤ CT −4/5−2/5OP (1) |Tu − (s − k/2)| .

Therefore,

T 8q/10(2q+1)
(
a′ĴT

(
b1,θP ,T , b̂2,T

)
a − a′ĴT

(
b1,θP ,T , b

opt
2,T

)
a
)

(S.33)

= T 8q/10(2q+1)
T −1∑

k=−T +1
K1 (b1,θP ,T k) nT

T

⌊T/nT ⌋∑
r=0

(
a′ĉ (rnT /T, k) a − a′ĉθ2,T (rnT /T, k) a

)

≤ T 8q/10(2q+1)C
T −1∑

k=−T +1

∣∣K1 (b1,θP ,T k)
∣∣nT

T

⌊T/nT ⌋∑
r=0

1
Tb

opt
2,T

×
T∑

s=k+1

∣∣∣∣∣K∗
2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K∗

2

(
((r + 1) nT − (s − k/2)) /T

bopt
2,T ((r + 1) nT /T )

)∣∣∣∣∣
×
∣∣∣(a′V̂sV̂ ′

s−ka − EP
(
a′VsV ′

s−ka
))

+ EP
(
a′VsV ′

s−ka
)∣∣∣
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≜ H1,T + H2,T .

We have to show that H1,T + H2,T
P→ 0. Let H1,1,T (resp. H1,2,T ) be defined as H1,T but with the sum

over k restricted to k = 1, . . . , ST (resp. k = ST + 1, . . . , T ). Let H2,1,T (resp. H2,2,T ) be defined as H2,T

but with the sum over k be restricted to k = 1, . . . , ST (resp. k = ST + 1, . . . , T ). Using the definition of
P U,3,

E
(
H2

1,1,T

)
≤ T 8q/5(2q+1)

ST∑
k=1

ST∑
j=1

K1 (b1,θP ,T k) K1 (b1,θP ,T j)
(

nT

T

)2 ⌊T/nT ⌋∑
r1=0

⌊T/nT ⌋∑
r2=0

1(
Tb

opt
2,T

)2 (S.34)

×
T∑

s=k+1

T∑
t=j+1

(
K∗

2

(
((r1 + 1) nT − (s − k/2)) /T

b̂2,T ((r1 + 1) nT /T )

)
− K∗

2

(
((r1 + 1) nT − (s − k/2)) /T

bopt
2,T ((r1 + 1) nT /T )

))

×
(

K∗
2

(
((r2 + 1) nT − (t − j/2)) /T

b̂2,T ((r2 + 1) nT /T )

)
− K∗

2

(
((r2 + 1) nT − (t − j/2)) /T

bopt
2,T ((r2 + 1) nT /T )

))

× EP

(
a′V̂sV̂ ′

s−ka − EP (VsVs−k)
) (

a′V̂tV̂
′

t−ja − EP (VtVt−j)
)

≤ CT 8q/5(2q+1)S2
T T −2/5

(
Tb

opt
2,T

)−1
sup
k≥1

Tb
opt
2,T VarP

(
Γ̂ (k)

)
OP (1)

≤ CT 8q/5(2q+1)S2
T T −2/5

(
Tb

opt
2,T

)−1
sup
k≥1

Tb
opt
2,T VarPU

(
Γ̂ (k)

)
OP (1)

≤ CT (8q+8r)/5(2q+1)−2/5−1OP

((
b

opt
2,T

)−1
)

→ 0,

where we have used r < (6 + 4q) /8. Turning to H1,2,T ,

E
(
H2

1,2,T

)
≤ T 8q/5(2q+1)−2/5

(
Tb

opt
2,T

)−1
b−2b

1,θP ,T

 T −1∑
k=ST +1

k−b
√

Tb
opt
2,T

(
VarP

(
Γ̂ (k)

))1/2
O (1)

2

(S.35)

≤ T 8q/5(2q+1)T −2/5−1
(
b

opt
2,T

)−1
b−2b

1,θP ,T

 T −1∑
k=ST +1

k−b
√

Tb
opt
2,T

(
VarPU

(
Γ̂ (k)

))1/2
2

≤ T 8q/5(2q+1)T −2/5−1
(
b

opt
2,T

)−1
b−2b

1,θP ,T

 T −1∑
k=ST +1

k−bO (1)

2

≤ T 8q/5(2q+1)T −2/5−1
(
b

opt
2,T

)−1
b−2b

1,θP ,T S
2(1−b)
T → 0,

since r > (b − 3/4 − q/2)/ (b − 1) . Eq. (S.34) and (S.35) yield H1,T
P→ 0. Given |K1 (·)| ≤ 1 and (S.32),

we have

|H2,1,T | ≤ CT 8q/10(2q+1)T −2/5
∞∑

k=1
k−l → 0,
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since
∑∞

k=1 k−l < ∞ for l > 1 and T 8q/10(2q+1)T −2/5 → 0. Finally,

|H2,2,T | ≤ CT 8q/10(2q+1)T −2/5
T −1∑

k=ST +1

∣∣ΓPU ,T (k)
∣∣

≤ CT 8q/10(2q+1)T −2/5S1−l
T

≤ CT 8q/10(2q+1)T −2/5T 4r(1−l)/5(2q+1) → 0,

which completes the proof. □

S.D Proof of the Results of Section 5

S.D.1 Proof of Theorem 5.1

Consider first the numerator of tDM,i. We have

T 1/2
n dL = δ2OP

(
T 1/2

n T −1
n nδ

)
+ OP

(
T 1/2

n T −1
n (Tn − nδ)1/2

)
N (0, JDM)

= δ2OP
(
T −1/2

n nδ

)
+ OP (1) ,

for some JDM ∈ (0, ∞) where the factor δ2 follows from the quadratic loss.
Next, we focus on the expansion of the denominator of tDM,i which hinges on which LRV estimator

is used. We begin with part (i). Under bT → 0 as T → ∞, Theorem 3.1 in Casini et al. (2023) yields

ĴdL,NW87,T =
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|) Γ̂ (k)

=
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|)

� 1

0
c (u, k) du

+
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|)

(
2−1

(
Tb − Tm − 1

Tn

)(
Tn − Tb − 2

Tn

)
δ4 + oP (1)

)

= CJDM +
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|)

(
2−1

(
Tb − Tm − 1

Tn

)(
Tn − Tb − 2

Tn

)
δ4 + oP (1)

)
,

for some C > 0 such that C < ∞. By Exercise 1.7.12 in Brillinger (1975),

⌊b−1
T ⌋∑

k=−⌊b−1
T ⌋

(1 − |bT k|) exp (−iωk) = bT

sin ⌊b−1
T ⌋ω

2
sin ω

2

2

.
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Evaluating the expression above at ω = 0 and applying L’Hôpital’s rule we yield,

⌊b−1
T ⌋∑

k=−⌊b−1
T ⌋

(1 − |bT k|) = bT

 ⌊b−1
T ⌋
2
1
2

2

=
⌊
b−1

T

⌋
.

Therefore, ĴdL,NW87,T = CJDM + δ4OP(b−1
T ) and

|tDM,NW87| ≤
δ2OP

(
T

−1/2
n nδ

)
+ OP (1)(

δ4O
(
b−1

T

))1/2 (S.1)

=
δ2O

(
T ζ

n

)
δ2O

(
b

−1/2
T

) = O
(
T ζ

nb
1/2
T

)
,

which implies Pδ(|tDM,NW87| > zα) → 0 since T ζ
nb

1/2
T → 0.

If bT = O(T −1/3), similar derivations yield |tDM,NW87| = O(T ζ−1/6
n ) and Pδ(|tDM,NW87| > zα) → 0.

We now consider part (ii). We have bT → 0 as T → ∞. The whitening step for ĴdL,pwNW87,T involves
the following fitted least-squares regression,

V̂t = Â1V̂t−1 + V̂ ∗
t for t = 2, . . . , Tn − 1,

where Â1 is the least-squares estimate and {V̂ ∗
t } is the corresponding least-squares residual. Under H1, V̂ ∗

t

exhibits a break in the mean of magnitude δ2 because V̂t has a break in the mean of the same magnitude

after Tb. From Casini et al. (2023) it follows that Â1
P→ A1,B with |1 − A1,B| < |1 − A1| where A1 is such

that Â1
P→ A1 under the null hypothesis (i.e., under δ = 0). Let

Ĵ∗
T =

⌊b−1
T ⌋∑

k=−⌊b−1
T ⌋

K1 (bT k) Γ̂∗ (k) , Γ̂∗ (k) = (Tn − 2)−1
Tn−1∑

t=|k|+2
V̂ ∗

t V̂ ∗
t−|k|,

and c∗ (u, k) = Cov(V̂ ∗
⌊T u⌋, V̂ ∗

⌊T u⌋−k). Using Theorem 3.1 in Casini et al. (2023),

ĴdL,pwNW87,T =
(
1 − Â1

)−2
Ĵ∗

T

=
(
1 − Â1

)−2
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|) Γ̂∗ (k)

=
(
1 − Â1

)−2
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|)

� 1

0
c∗ (u, k) du
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+
(
1 − Â1

)−2
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|)

(
2−1

(
Tb − Tm

Tn

)(
Tn − Tb

Tn

)
δ4 + oP (1)

)

= C (1 − A1,B)−2 JDM

+ (1 − A1,B)−2
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |bT k|)

(
2−1

(
Tb − Tm

Tn

)(
Tn − Tb

Tn

)
δ4 + oP (1)

)
,

for some finite C > 0. Thus, ĴdL,pwNW87,T = C (1 − A1,B)−2 JDM + (1 − A1,B)−2 δ4OP(b−1
T ) and

|tDM,pwNW87| ≤
δ2OP

(
T

−1/2
n nδ

)
+ OP (1)(

(1 − A1,B)−2 δ4O
(
b−1

T

))1/2 (S.2)

=
(1 − A1,B) δ2O

(
T ζ

n

)
δ2O

(
b

−1/2
T

) = O
(
T ζ

nb
1/2
T

)
,

which implies Pδ(|tpwDM,NW87| > zα) → 0 since T ζ
nb

1/2
1,T → 0.

In part (iii), bT = T −1. Proceeding as in (S.1) we have |tDM,KVB| = O(T ζ−1
n ) and Pδ(|tDM,KVB| >

zα) → 0 since T ζ−1
n → 0.

We consider part (iv). Using Theorem 3.3 in Casini et al. (2023), we have

ĴdL,DK,T =
Tn−2∑

k=−Tn+2
K1

(
b̂1,T k

) nTn

Tn

⌊Tn/nTn ⌋∑
r=1

ĉT (rnTn/Tn, k)

=
Tn−2∑

k=−Tn+2
K1

(
b̂1,T k

) nTn

Tn

⌊Tn/nTn ⌋∑
r=1

(
c (rnTn/Tn, k)

+ δ21
{(

|rnTn + k/2 + Tnb̂2,T /2 + 1) − Tb|/(Tnb̂2,T )
)

∈ (0, 1)
})

+ oP (1)

= JDM + δ2OP

((
b̂1,T

)−1
b̂2,T

)
+ oP (1) .

Using b̂2,T /b̂1,T → 0 it follows that

|tDM,DK| =
δ2OP

(
T

−1/2
n nδ

)
+ OP (1)(

JDM + δ2OP

((
b̂1,T

)−1
b̂2,T

))1/2

= δ2O
(
T ζ

n

)
.

Since T ζ
n → ∞, we have Pδ(|tDM,DK| > zα) → 1.

Finally, we consider part (v). The whitening step for ĴdL,pwDK,T involves the following fitted least-
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squares regression,

V̂t = Âr,1V̂t−1 + V̂ ∗
t for t = rnTn + 1, . . . , (r + 1) nTn ,

(for the last block, t = ⌊Tn/nTn⌋ nTn + 1, . . . , Tn) where Âr,1 is the least-squares estimate and {V̂ ∗
t } is the

corresponding least-squares residual. Under H1, V̂ ∗
t exhibits a break in the mean of magnitude δ2 in the

r∗th block such that Tb ∈ {r∗nTn + 1, . . . , (r∗ + 1) nTn}. This follows because V̂t has a break in the mean
of the same magnitude after Tb. Note that over the blocks r ̸= r∗, V̂t does not have a break in the mean.
Using Theorem 3.3 in Casini et al. (2023), we have

ĴdL,pwDK,T =
Tn−1∑

k=−Tn+1
K1

(
b̂∗

1,T k
) nTn

Tn

⌊Tn/nTn ⌋∑
r=1

ĉ∗
T,D (rnTn/Tn, k)

=
Tn−1∑

k=−Tn+1
K1

(
b̂∗

1,T k
) nTn

Tn

⌊Tn/nTn ⌋∑
r=1

(
c∗

D (rnTn/Tn, k)

+ δ21
{(

|r∗nTn + k/2 + Tnb̂∗
2,T /2 + 1) − Tb|/(Tnb̂∗

2,T )
)

∈ (0, 1)
})

+ oP (1)

= JDM + δ2OP

((
b̂∗

1,T

)−1
b̂∗

2,T

)
+ oP (1) .

It follows that

|tDM,pwDK| =
δ2OP

(
T

−1/2
n nδ

)
+ OP (1)(

JDM + δ2OP

((
b̂∗

1,T

)−1
b̂∗

2,T

))1/2

= δ2O
(
T ζ

n

)
.

Since T ζ
n → ∞ we have Pδ(|tDM,pwDK| > zα) → 1. □
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