
The Fixed-b Limiting Distribution and the ERP of
HAR Tests Under Nonstationarity*

Alessandro Casini�

University of Rome Tor Vergata

16th September 2023

Abstract

We show that the limiting distribution of HAR test statistics under fixed-b asymptotics is not
pivotal when the data are nonstationary (i.e., time-varying autocovariance structure). It takes the form
of a complicated function of Gaussian processes and depends on the second moments of the relevant
series (e.g., of the regressors and errors for the case of the linear regression model). Hence, fixed-b
inference methods based on stationarity are not theoretically valid in general. The nuisance parameters
entering the fixed-b limiting distribution can be consistently estimated under small-b asymptotics but
only with nonparametric rate of convergence. We show that the error in rejection probability (ERP) is
an order of magnitude larger than that under stationarity and can be also larger than that of HAR tests
based on HAC estimators under conventional asymptotics. These theoretical results reconcile with
recent finite-sample evidence showing that existing fixed-b HAR tests can perform poorly when the
data are nonstationary. They can be conservative under the null hypothesis and have non-monotonic
power under the alternative hypothesis irrespective of how large the sample size is. Based on the new
nonstationary fixed-b distribution, we propose a feasible method that controls the null rejection rates
well regardless of whether the data are stationary or not and of the strength of the serial dependence.

JEL Classification: C12, C13, C18, C22, C32, C51
Keywords: Asymptotic expansion, Fixed-b, HAC standard errors, HAR inference, Long-run vari-
ance, Nonstationarity.

*I am grateful to Pierre Perron for his support and advice. I thank the Editor and an anonymous referee for useful
comments. I thank Andrew Chesher, Jungbin Hwang, Oliver Linton, Ulrich Müller, Julius Vainora, Daniel Whilem
and seminar participants at University College London, University of Cambridge and University of Connecticut for
comments.

�Department of Economics and Finance, University of Rome Tor Vergata, Via Columbia 2, Rome 00133, IT.
Email: alessandro.casini@uniroma2.it.



fixed-bandwidth har inference

1 Introduction

The construction of standard errors robust to autocorrelation and heteroskedasticity is important

for empirical work because economic and financial time series exhibit temporal dependence. The

early literature focused on heteroskedasticity and autocorrelation consistent (HAC) estimators of

the asymptotic variance of test statistics (or simply the long-run variance (LRV) of the relevant

series) [see, e.g., Newey and West (1987; 1994), Andrews (1991), Andrews and Monahan (1992),

Hansen (1992), de Jong and Davidson (2000)]. This approach aims at devising a good estimate

of the LRV. Over the last twenty years, the literature has focused on methods based on fixed-b

asymptotics. These involve an inconsistent estimate of the LRV that keeps the bandwidth at a fixed

fraction of the sample size. This approach was initiated by Kiefer, Vogelsang and Bunzel (2000)

and Kiefer and Vogelsang (2002b; 2002a). They developed the analysis assuming stationarity and

showed that valid heteroskedasticity and autocorrelation robust (HAR) inference is feasible even

without a consistent estimator of the LRV. Inconsistency results in a pivotal nonstandard limiting

distribution whose critical value can be obtained by simulations (e.g., a t-statistic on a coefficient

in the linear regression model will not follow asymptotically a standard normal distribution but a

distribution involving a ratio of Gaussian processes). Theoretical results based on asymptotic ex-

pansions suggested that fixed-b HAR test statistics exhibit an error in rejection probability (ERP)

that is smaller than that associated to test statistics based on HAC estimators [see Jansson (2004)

and Sun, Phillips and Jin (2008)]. This supported extensive finite-sample evidence in the litera-

ture documenting that the fixed-b approach leads to HAR test statistics with more accurate null

rejection rates when the data are stationary with strong temporal dependence than those associ-

ated to test statistics based on HAC estimators. Since then the literature has mostly concentrated

on various refinements of fixed-b HAR inference while maintaining the stationarity assumption,

mostly to have tests having null rejection rates closer to the nominal level.

Although stationarity rarely holds in economic and financial time series, the literature has

surprisingly ignored investigating the theoretical and empirical properties of existing fixed-b HAR

inference when stationarity does not hold. By nonstationary we mean non-constant moments. As

in the literature, we consider processes whose sum of absolute autocovariances is finite. This rules

out processes with unbounded second moments (e.g., unit root). Nonstationarity can occur for

several reasons: changes in the moments of the relevant time series induced by changes in the

model parameters that govern the data (e.g., the Great Moderation with the decline in variance

for many macroeconomic variables, the effects of the financial crisis of 2007–2008 or of the COVID-

19 pandemic); smooth changes in the distributions governing the data that arise from transitory
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dynamics from one regime to another. Unfortunately, the theoretical properties of fixed-b HAR

inference change substantially when stationarity does not hold. The contribution of the paper is

to establish such theoretical results and discuss their relevance for inference in empirical work.

We show that the limiting distribution of HAR test statistics under fixed-b asymptotics is not

pivotal when the data are nonstationary. It takes the form of a complicated function of Gaussian

processes and depends on the second moments of the relevant series. For example, in the case

of the linear regression model, it depends on the second moments of the regressors and errors.

Hence, fixed-b inference methods based on stationarity are not theoretically valid in general. The

nuisance parameters entering the fixed-b limiting distribution can be consistently estimated under

small-b asymptotics but only with nonparametric rate of convergence. We develop asymptotic

expansions under nonstationarity and we show that the ERP is an order of magnitude larger than

that obtained under stationarity by Jansson (2004) and Sun et al. (2008) [cf. O(T −γ) with γ < 1/2
versus O(T −1) where T is the sample size]. Further, we show that the ERP of fixed-b HAR tests is

also larger than that of HAR tests based on HAC estimators. It follows from our results that if one

uses fixed-b methods based on the pivotal fixed-b limiting distribution obtained under stationarity

but the data are nonstationary, then the ERP does not even converge to zero as the sample size

increases because that is not the correct limiting distribution. Hence, our results provide formal

support to the claims in Ibragimov and Müller (2010) and Müller (2014) who mentioned that the

stationarity assumption required by existing fixed-b methods can be a limitation.

The pivotal property breaks down because under nonstationarity the LRV estimator that

uses a fixed-bandwidth is not asymptotically proportional to the LRV. A non-pivotal limiting

distribution results in a much more complex type of inference in practice. The increase in the ERP

from the stationary case arises from fact that the nuisance parameters have to be estimated. It is

the discrepancy between these estimates and their probability limits that is reflected in the leading

term of the asymptotic expansion.

Our theoretical results reconcile with recent finite-sample evidence that showed that fixed-b

HAR tests can perform poorly when the data are nonstationary. These issues have been docu-

mented extensively by Belotti et al. (2023), Casini (2023b), Casini and Perron (2021) and Casini,

Deng and Perron (2023) who considered t-tests in the linear regression models as well as HAR tests

outside the linear regression model, and a variety of data-generating processes. They provided ev-

idence that existing fixed-b HAR tests can be severely undersized and can exhibit non-monotonic

power. The more nonstationary the data are, the stronger the distortions. This is especially vis-

ible in HAR inference contexts characterized by a stationary null hypothesis and a nonstationary
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alternative hypothesis [e.g., tests for structural breaks, tests for regime-switching, tests for time-

varying parameters and threshold effects, and tests for forecast evaluation]. In such cases, the

power of fixed-b HAR tests can be zero irrespective of how large the sample size is and how far the

alternative is from the null value.

In our simulation analysis we focus on HAR inference in the linear regression model. The

empirical results corroborate the predictions of our ERP results as the existing fixed-b method

yields substantial under-rejections. On the other hand, LRV estimators using small-b bandwidths

and standard asymptotic distributions avoid these under-rejection issues but likely exhibit over-

rejections in the context of strongly persistent (stationary or nonstationary) processes. To address

these problems, we propose a feasible inference method based on the non-pivotal nonstationary

fixed-b limiting distribution that involves replacing the nuisance parameters by nonparametric

estimates and obtaining the critical values by simulating the limiting distribution. The new method

leads to HAR test statistics with accurate null rejection rates irrespective of whether the data are

stationary or not and of the strength of the serial dependence.

Recent works in HAR inference [see, e.g., Sun (2014) and Lazarus, Lewis, Stock and Watson

(2018)] considered the use of small-b asymptotics (i.e., small-bandwidths) in conjunction with fixed-

b critical values. These bandwidths are typically larger than the MSE-optimal bandwidths used

for the HAC estimators. The idea is that as bT → 0 the fixed-b limiting distribution approximates

the standard asymptotic distribution based on small-b asymptotics. Although our results are

obtained for fixed-bandwidths, they might suggest that using the critical values from the new

fixed-b limiting distribution would improve the finite-sample performance under nonstationarity.

This is an interesting research question which, however, deserves its own research.

The remainder of the paper is organized as follows. Section 2 introduces the statistical problem

in the well-known setting of the linear regression model. In Section 3 we study the limiting

distribution of t- and F -type test statistics. Section 4 develops the asymptotic expansions and

presents the results on the ERP. Section 5 presents Monte Carlo simulations. Section 6 concludes

the paper. The supplemental material [cf. Casini (2023a)] contains all mathematical proofs.

2 HAR Testing in the Linear Regression Model

We consider the linear regression model

yt = x′
tβ0 + et, t = 1, 2, . . . , T, (2.1)
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where β0 ∈ Θ ⊂ Rp, yt is an observation on the dependent variable, xt is a p-vector of regressors and

et is an unobserved disturbance that is autocorrelated and possibly conditionally heteroskedastic,

and E(et| xt) = 0. The problem addressed is testing linear hypotheses about β0. We consider

the ordinary least squares (OLS) estimator β̂ = (∑T
t=1 xtx

′
t)−1∑T

t=1 xtyt. Let Vt = xtet. Define

S⌊T r⌋ = ∑⌊T r⌋
t=1 Vt where ⌊Tr⌋ denotes the integer part of Tr. Using ordinary manipulations,

√
T
(
β̂ − β0

)
=
(

T −1
T∑

t=1
xtx

′
t

)−1

T −1/2ST .

The variance of T −1/2ST plays an important role for constructing tests about β0. Its exact formula

depends on the assumptions about {Vt}. We begin with the following notational conventions.

A function g (·) : [0, 1] 7→ R is said to be piecewise (Lipschitz) continuous if it is (Lipschitz)

continuous except on a set of discontinuity points that has zero Lebesgue measure. A matrix is said

to be piecewise (Lipschitz) continuous if each of its element is piecewise (Lipschitz) continuous. Let

Wp (r) denote a p-vector of independent standard Wiener processes where r ∈ [0, 1]. We use
P→, ⇒

and
d→ to denote convergence in probability, weak convergence and convergence in distribution,

respectively. The following assumptions are sufficient to establish the asymptotic distribution of

the test statistics. Let Ω (u) denote some p × p positive semidefinite matrix.

Assumption 2.1. T −1/2S⌊T r⌋ ⇒
� r

0 Σ (u) dWp (u) where Σ (u) is given by the Cholesky decomposition

Ω (u) = Σ (u) Σ (u)′ and is piecewise continuous with supu∈[0, 1] ∥Σ (u)∥ < ∞.

Assumption 2.2. T −1∑⌊T r⌋
t=1 xtx

′
t

P→
� r

0 Q (u) du uniformly in r where Q (u) is piecewise continuous

with supu∈[0, 1] ∥Q (u)∥ < ∞.

Assumption 2.1 states a functional law for nonstationary processes [see, e.g., Aldous (1978)

and Merlevède, Peligrad and Utev (2019)]. If {Vt} is second-order stationary, then Σ (u) = Σ for all

u and Assumption 2.1 reduces to T −1/2S⌊T r⌋ ⇒ ΣWp (r). The fixed-b literature has routinely used

the assumption of second-order stationarity [see, e.g., Kiefer et al. (2000), Jansson (2004), Sun et al.

(2008) and Lazarus, Lewis and Stock (2021)]. We relax this assumption substantially as we allow

for general time-variation in the second moments of the regressors and errors which encompasses

most of the nonstationary processes used in econometrics and statistics. For example, it allows

for structural breaks, regime-switching, time-varying parameters and segmented local stationarity

in the second moments of {Vt}. With regards to the temporal dependence, Assumption 2.1 holds

under a variety of regularity conditions. For example, standard mixing conditions and (time-

varying) invertible ARMA processes are allowed.
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Assumption 2.2 allows for structural breaks as well as smooth variation in the second moments

of the regressors.1 The fixed-b literature required Q (u) = Q for all u in which case Assumption

2.2 reduces to T −1∑⌊T r⌋
t=1 xtx

′
t

P→ rQ. The latter is quite restrictive in practice. The uniform

convergence, boundness and positive definiteness of Q (·) are satisfied for a fairly general class of

processes. As in previous works, Assumption 2.1-2.2 rule out unit roots and long memory. Let

Var
(
T −1/2ST

)
=

T −1∑
k=−T +1

ΓT,k, ΓT,k =

T −1∑T
t=k+1 E(VtV

′
t−k) for k ≥ 0

T −1∑T
t=−k+1 E(Vt+kV ′

t ) for k < 0
. (2.2)

Under Assumption 2.1-2.2, the limit of Var(T −1/2ST ) is given by [cf. Casini (2023b)]

lim
T →∞

Var
(
T −1/2ST

)
≜ Ω =

� 1

0
c (u, 0) du +

∞∑
k=1

� 1

0

(
c (u, k) + c (u, k)′

)
du,

where c (u, k) = E(V⌊T u⌋V⌊T u⌋−k) + O(T −1). By the Cholesky decomposition Ω (u) = Σ (u) Σ (u)′

and so Ω =
� 1

0 Ω (u) du. Note that Ω = 2π
� 1

0 f (u, 0) du where f (u, 0) is the local spectral density
matrix of {Vt} at rescaled time u and frequency 0. For u a continuity point, f (u, ω) is defined

implicitly by the relation E(V⌊T u⌋V⌊T u⌋−k) =
� π

−π
eiωkf (u, ω) dω; see Casini (2023b) for more details.

If {Vt} is second-order stationary, then Ω = ΣΣ′ = 2πf (0) since f(u, 0) = f(0).
Under Assumption 2.1-2.2, it directly follows, using standard arguments, that

√
T
(
β̂ − β0

)
d→ Q

−1Ω1/2Wp (1) ∼ N
(
0, Q

−1ΩQ
−1)

, (2.3)

where Ω1/2 is the matrix square-root of Ω and Q ≜
� 1

0 Q (u) du. Under second-order stationarity

Q (u) = Q, Σ (u) = Σ and (2.3) reduces to

√
T
(
β̂ − β0

)
d→ Q−1ΣWp (1) ∼ N

(
0, Q−1ΩQ−1

)
. (2.4)

The classical approach to testing hypotheses about β0 is based on studentization. Provided that

a consistent estimator of Q
−1ΩQ

−1
can be constructed, it is possible to construct a test statistic

whose asymptotic distribution is free of nuisance parameters. The term Q can be consistently

estimated straightforwardly using Q̂ = T −1∑T
t=1 xtx

′
t. Consistent estimators of Ω are known as

HAC estimators [see, e.g., Newey and West (1987), Andrews (1991), de Jong and Davidson (2000)

1Assumption 2.2 also allows for polynomial trending regressors as long as they are written in the form (t/T )l

(l ≥ 0), or more generally, written as a piecewise continuous function of the time trend, say g(t/T ).
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and Casini (2023b)]. HAC estimators take the following general form,

Ω̂HAC ≜
T −1∑

k=−T +1
K (bT k) Γ̂ (k),

where

Γ̂ (k) =

T −1∑T
t=k+1 V̂tV̂

′
t−k for k ≥ 0

T −1∑T
t=−k+1 V̂t+kV̂ ′

t for k < 0
, (2.5)

V̂t = xtêt and {êt} are the OLS residuals, K (·) is a kernel and bT is a bandwidth sequence. Under

bT → 0 at an appropriate rate, we have Ω̂HAC
P→ Ω. An alternative to Ω̂HAC is the double-kernel

HAC (DK-HAC) estimator, say Ω̂DK−HAC, proposed by Casini (2023b) to flexibly account for

nonstationarity. Ω̂DK−HAC uses an additional kernel for smoothing over time; see Casini (2023b)

for details. Under appropriate conditions on the bandwidths, we have Ω̂DK−HAC
P→ Ω. Hence,

equipped with either Ω̂HAC or Ω̂DK−HAC, HAR inference is standard because test statistics follow

asymptotically standard distributions.

An alternative approach to HAR inference relies on inconsistent estimation of Ω. Kiefer and

Vogelsang (2002b, 2002a, 2005) proposed to use the following “estimator”,2

Ω̂fixed−b ≜
T −1∑

k=−T +1
K

(
k

bT

)
Γ̂ (k), (2.6)

where b ∈ (0, 1] is fixed. Note that Ω̂fixed−b is equivalent to Ω̂HAC with bT = (bT )−1. Ω̂fixed−b is

inconsistent for Ω. Kiefer et al. (2000) showed that an asymptotic distribution theory for HAR tests

is possible even with an inconsistent estimate of Ω. One first has to derive the limiting distribution

of Ω̂fixed−b under the null hypothesis. Then, one can use it to obtain the limiting distribution of

the test statistic of interest which typically involves a ratio of Gaussian processes. Thus, from the

inconsistency of Ω̂fixed−b, HAR test statistics will not follow asymptotically standard distributions.

2As a notational matter, it is useful to remark that the more recent fixed-b literature does not refer to Ω̂fixed−b

as an estimator. This recent literature rather uses the terminology “fixed-b” to refer to an asymptotic embedding.
We may sometime refer to Ω̂fixed−b as an estimator. This should not create any confusion since our results are
provided for the case of b fixed which corresponds to the early fixed-b literature.
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3 Fixed-b Limiting Distribution of HAR Tests

In this section we study the limiting distribution of the HAR tests for linear hypothesis in the linear

regression model under fixed-b asymptotics when the data are nonstationary. Consider testing the

null hypothesis H0 : Rβ0 = r against the alternative hypothesis H1 : Rβ0 ̸= r where R is a q × p

matrix with rank q and r is a q × 1 vector. Using Ω̂fixed−b an F -test can be constructed as follows:

Ffixed−b = T
(
Rβ̂ − r

)′ [
RQ̂−1Ω̂fixed−bQ̂

−1R′
]−1 (

Rβ̂ − r
)

/q.

For testing one restriction, q = 1, one can use the following t-statistic:

tfixed−b =
T 1/2

(
Rβ̂ − r

)
√

RQ̂−1Ω̂fixed−bQ̂−1R′
.

Let Bp (r) = Wp (r) − rWp (1) denote the p × 1 vector of Brownian bridges. Consider the following

class of kernels,

K = {K (·) : R → [−1, 1] : K (0) = 1, K (x) = K (−x) , ∀x ∈ R (3.1)� ∞
−∞K2 (x) dx < ∞, K (·) is continuous at 0}.

Examples of kernels in K include the Truncated, Bartlett, Parzen, Quadratic Spectral (QS) and

Tukey-Hanning kernels. Kiefer and Vogelsang (2005) showed under stationarity that

Ω̂fixed−b ⇒ −Σ
(

1
b2

� 1

0

� 1

0
K ′′

(
r − s

b

)
Bp (r) Bp (s)′ drds

)
Σ′, (3.2)

for K ∈ K with K ′′ (x) assumed to exist for x ∈ [−1, 1] and to be continuous.3 A key feature

of the result in (3.2) is that Ω̂fixed−b is asymptotically proportional to Ω through ΣΣ′. The null

3Note that K ′′ (x) does not exist for some popular kernels. This is the case for the Bartlett kernel for which
K ′′ (0) does not exist. However, Kiefer and Vogelsang (2005) showed that for the Bartlett kernel it holds that

Ω̂fixed−b ⇒ Σ
(

2
b

� 1

0
Bp (r) Bp (r)′

dr

− 1
b

� 1−b

0

(
Bp (r + b) Bp (r)′ + Bp (r + b) Bp (r)′)

dr

)
Σ′.

Recall that the Bartlett kernel is defined as KBT (x) = 1 − |x| for |x| ≤ 1 and KBT (x) = 0 otherwise.

7



alessandro casini

asymptotic distributions of Ffixed−b and tfixed−b under stationarity are given, respectively, by

Ffixed−b ⇒Wq (1)′
[
− 1

b2

� 1

0

� 1

0
K ′′

(
r − s

b

)
Bq (r) Bq (s)′ drds

]−1

Wq (1) /q,

and

tfixed−b ⇒ W1 (1)√
− 1

b2

� 1
0

� 1
0 K ′′

(
r−s

b

)
B1 (r) B1 (s) drds

.

Both null distributions are pivotal. Thus, valid testing is possible without consistent estimation of

Ω. This result crucially hinges on stationarity. To see this, consider tfixed−b for the single-regressor

case (p = 1) and for the null hypothesis H0 : β0 = 0. Its numerator and denominator are

asymptotically equivalent to, respectively, Q−1ΣW1 (1) and

Q−1Σ
(

− 1
b2

� 1

0

� 1

0
K ′′

(
r − s

b

)
B1 (r) B1 (s) drds

)1/2

.

Since W1 (1) and B1 (r) are independent, tfixed−b is a ratio of two independent random variables.

The factor Q−1Σ cancels because it appears in both numerator and denominator. It follows that the

asymptotic null distribution is pivotal. We show that this argument break downs when stationarity

does not hold. Under nonstationarity the factor in the denominator corresponding to Q−1Σ will

depend on the rescaled time s and r, and enter the integrand. Thus, it will not cancel out.

We now present the results about the fixed-b limiting distribution of the HAR tests. For

r ∈ [0, 1] , let

B̃p (r) = B̃p (r, Σ, Q) ≜
� r

0
Σ (u) dWp (u) −

(� r

0
Q (u) du

)
Q

−1
� 1

0
Σ (u) dWp (u) .

We begin with the following theorem which provides the limiting distribution of Ω̂fixed−b.

Theorem 3.1. Let Assumption 2.1-2.2 hold and K ∈ K. Then, we have: (i) If K ′′ (x) exists for

x ∈ [−1, 1] and is continuous, then

Ω̂fixed−b ⇒ − 1
b2

� 1

0

� 1

0
K ′′

(
r − s

b

)
B̃p (r, Σ, Q) B̃p (s, Σ, Q)′ drds (3.3)

≜ Gb.
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(ii) If K (x) = KBT (x), then

Ω̂fixed−b ⇒ 2
b

� 1

0

(
B̃p (r, Σ, Q) B̃p (r, Σ, Q)′

)
dr (3.4)

− 1
b

� 1−b

0

(
B̃p (r + b, Σ, Q) B̃p (r, Σ, Q)′ + B̃p (r, Σ, Q) B̃p (r + b, Σ, Q)′

)
dr

≜ GBT,b.

Theorem 3.1 show that, unlike in the stationary case, Ω̂fixed−b is not asymptotically propor-

tional to Ω. This anticipates that asymptotically pivotal tests for null hypotheses involving β0

cannot be constructed. The limiting distribution depends on K ′′ (·) , b and most importantly on

Σ (·) and Q (·) so that it is not free of nuisance parameters.

We now present the limiting distribution of Ffixed−b and tfixed−b under H0.

Theorem 3.2. Let Assumption 2.1-2.2 hold and K ∈ K. Then, we have: (i) If K ′′ (x) exists for

x ∈ [−1, 1] and is continuous, then

Ffixed−b ⇒
(

RQ
−1

� 1

0
Σ (u) dWp (u)

)′ (
RQ

−1
GbQ

−1
R′
)−1

RQ
−1

� 1

0
Σ (u) dWp (u) /q,

where Gb is defined in (3.3). If q = 1, then

tfixed−b ⇒
RQ

−1 � 1
0 Σ (u) dWp (u)√

RQ
−1

GbQ
−1

R′
.

(ii) If the Bartlett kernel is used, K (x) = KBT (x), then

Ffixed−b ⇒
(

RQ
−1

� 1

0
Σ (u) dWp (u)

)′ (
RQ

−1
GBT,bQ

−1
R′
)−1

RQ
−1

� 1

0
Σ (u) dWp (u) /q,

where GBT,b is defined in (3.4). If q = 1, then

tfixed−b ⇒
RQ

−1 � 1
0 Σ (u) dW1 (u)√

RQ
−1

GBT,bQ
−1

R′
.

Theorem 3.2 shows that the asymptotic distribution of the F and t test statistics under fixed-b

asymptotics under nonstationarity are not pivotal. This contrasts with the stationary case where

the asymptotic distributions depend only on the kernel and bandwidth. Consequently, fixed-b
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inference based on stationarity is not theoretically valid under nonstationarity. The limiting distri-

butions of Ffixed−b and tfixed−b depend on nuisance parameters such as the time-varying autocovari-

ance function of {Vt} through Σ (·) and the second moments of the regressors through Q (·). An

inspection of the proof shows that it is practically impossible to make Ffixed−b and tfixed−b pivotal

by studentization based on any sequence of inconsistent covariance matrix estimates. This follows

because the LRV is time-varying and, as noted above, this break downs the property that both

numerator and denominator are asymptotically proportional to Ω so that the nuisance parameters

cancel out. On the other hand, the property that under nonstationarity the fixed-b asymptotic

framework yields non-pivotal asymptotic distributions that depend on the underlying second-order

properties of {Vt} may suggest that reliable HAR inference is more challenging.

Theorem 3.2 suggests that valid inference under fixed-b asymptotics is going to be more

complex in terms of practical implementation relative to when the data are stationary. In the

literature, complexity in the implementation has been recognized as a strong disadvantage for the

success of a given method in empirical work [see, e.g., Lazarus et al. (2021)]. The simplest way

to use Theorem 3.2 for conducting inference is to replace the nuisance parameters by consistent

estimates. This means constructing estimates of Σ (u), Q (u) and Q. For Q the argument is

straightforward. As under stationarity, one can use Q̂ = T −1∑T
t=1 xtx

′
t since Q̂ − Q

P→ 0 also

under nonstationarity. More complex is the case for Σ (u) and Q (u). Nonparametric estimators

for Σ (u) and Q (u) can be constructed. This requires introducing bandwidths and kernels as well

as a criterion for their choice. Then, one plugs-in these estimates into the limit distribution and

the critical value can be obtained by simulations. However, since Σ (u), Q (u) and Q depend on the

data, the critical values need to be obtained on a case-by-case basis. We consider this approach in

our simulation analysis in Section 5 below.

It is interesting to briefly discuss the properties of fixed-b HAR inference when {Vt} follows

more general forms of nonstationary, i.e., {Vt} does not satisfy Assumption 2.1-2.2. Assumption

2.1-2.2 are satisfied if {Vt} is, e.g., segmented locally stationary, locally stationary and, of course,

stationary. However, if {Vt} is a sequence of unconditionally heteroskedastic random variables

such that Q (s) and Σ (s) do not satisfy the smoothness restrictions in Assumption 2.1-2.2 then

Theorem 3.1-3.2 do not hold. For example, consider Vt = ρtVt−1 + ut where ut ∼ i.i.d. N (0, 1)
and ρt ∈ (−1, 1) for all t. Segmented local stationarity corresponds to ρt being piecewise continu-

ous, local stationarity corresponds to ρt being continuous and stationarity corresponds to ρt being

constant. If ρt does not satisfy any of these restrictions, Assumption 2.1-2.2 do not hold. For un-

conditionally heteroskedastic random variables the asymptotic distributions of Ffixed−b and tfixed−b

10
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remain unknown since they cannot be characterized. Thus, for general nonstationary random vari-

ables fixed-b inference based on the asymptotic distribution is infeasible. This highlights one major

difference from HAR inference based on consistent estimation of Ω. HAC and DK-HAC estimators

are consistent for Ω also for general nonstationary random variables so that HAR test statistics

follow asymptotically the usual standard distributions. For example, a t-statistic studentized by a

HAC or DK-HAC estimator will follow asymptotically a standard normal.

Before concluding this section, we note that a few papers explored fixed-b asymptotics in

settings that involve other forms of nonstationarity that do not fall within the standard HAR

inference problem with
√

T -asymptotically normal OLS estimator. Bunzel and Vogelsang (2005)

allowed for deterministic trends and integrated of order one (I(1)) errors. Vogelsang and Wagner

(2013) considered fixed-b asymptotics for unit root tests while Vogelsang andWagner (2014) focused

on cointegrating regression. Finally, Xu (2012) considered multivariate trend tests allowing for

time-varying volatility and no serial correlation.

4 Error in Rejection Probability in a Gaussian Location Model

We develop high-order asymptotic expansions and obtain the ERP of fixed-b HAR tests. The

results in Velasco and Robinson (2001), Jansson (2004) and Sun et al. (2008) suggest that under

stationarity the ERP of Ffixed−b and of tfixed−b are smaller than those of the conventional HAC-based

HAR tests. We show that the opposite is true when stationarity does not hold.

Consider the location model yt = β0 + et (t = 1, . . . , T ). We have Vt = et. Under the

assumption that Vt is stationary and Gaussian, Velasco and Robinson (2001) developed second-

order Edgeworth expansions and showed that

P (tHAC ≤ z) − Φ (z) = d (z) (TbT )−1/2 + o
(
(TbT )−1/2

)
, (4.1)

for any z ∈ R where

tHAC =
√

T
(
β̂ − β0

)
√

Ω̂HAC

,

bT → 0, Φ (·) is the distribution function of the standard normal and d (·) is an odd function. The

ERP is the leading term of the right-hand side of (4.1). Since bT = O(T −η) with 0 < η < 1, the
ERP of tHAC is O(T −γ) with γ < 1/2. It follows that the leading term of P(FHAC ≤ c) where

11
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FHAC = T (β̂ − β0)2/Ω̂HAC is of the form 2d(
√

c)T −γ = O(T −γ) for any c > 0.

Jansson (2004) and Sun et al. (2008) showed that4

P (Ffixed−b ≤ c) − P

 W1 (1)2

� 1
0

� 1
0 −K ′′ (r − s) B1 (r) B1 (s)′ drds

≤ c

 = O
(
T −1

)
. (4.2)

Thus, Ffixed−b has a smaller ERP than FHAC [cf. O(T −1) versus O(T −γ)]. This implies that the rate

of convergence of Ffixed−b to its (nonstandard) limiting null distribution is faster than the rate of

convergence of FHAC to a χ2
1. These results reconciled with finite-sample evidence in the literature

showing that the null rejection rates of Ffixed−b and tfixed−b are more accurate than those of FHAC

and tHAC, respectively, when that data are stationary.

We now address the question of whether these results extend to nonstationarity. It turns

out that the answer is negative. This provides an analytical explanation for the Monte Carlo

experiments that have appeared recently in Casini (2023b), Casini et al. (2023) and Casini and

Perron (2021) who found serious distortions in the rejection rates of fixed-b HAR tests under the

null and alternative hypotheses when the data are nonstationary. These distortions being often

much larger than those corresponding to the conventional HAC-based HAR tests.

Theorem 3.2 showed that the fixed-b HAR tests are not pivotal. Thus, a natural way to

conduct inference based on the fixed-b asymptotic distribution is to construct consistent estimates

of its nuisance parameters. We introduce a general nonparametric estimator of Σ (u). Let

K2 = {K2 (·) : R → [0, ∞] : K2 (x) = K2 (1 − x) ,
�

K2 (x) dx = 1,

K2 (x) = 0, for x /∈ [0, 1] , K2 (·) is continuous},

and

Ω̂ (u) = Σ̂2 (u) =
T −1∑

k=−T +1
Kh1 (h1k) ĉT,h2 (u, k) , (4.3)

where Kh1 (·) ∈ K, h1 is a bandwidth sequence satisfying h1 → 0,

ĉT,h2 (u, k) = (Th2)−1
T∑

s=|k|+1
Kh2

(
(⌊Tu⌋ − (s − |k|/2)) /T

h2

)
V̂sV̂ s−|k|,

4Actually Jansson (2004) showed that the bound was O(T −1 log T ). Using a different proof strategy, Sun et al.
(2008) showed that the log T term can be dropped.

12
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with Kh2 (·) ∈ K2 and h2 is a bandwidth sequence satisfying h2 → 0. Since xt = 1 for all t, we

have Q (u) = 1 for all u ∈ [0, 1] in (3.3)-(3.4). Thus, we set Q̂ (u) = 1 for all u ∈ [0, 1]. For

arbitrary xt, one can take

Q̂ (u) = (Th2)−1
T∑

s=1
Kh2

(
(⌊Tu⌋ − s) /T

h2

)
x2

s.

As in the literature, we focus on the simple location model with Gaussian errors. The Gaussianity

assumption can be relaxed by considering distributions with, for example, Gram-Charlier repre-

sentations at the expenses of more complex derivations [see, e.g., Phillips (1980)]. The following

assumption on Vt facilitates the development of the higher order expansions and is weaker than

the one used by Sun et al. (2008) since they also imposed second-order stationarity.

Assumption 4.1. {Vt} is a mean-zero Gaussian process with sup1≤t≤T

∑∞
k=−∞ k2|E(VtVt−k)| < ∞.

In order to develop the asymptotic expansions we use the following conditions on the kernel

which were also used by Andrews (1991) and Sun et al. (2008).

Assumption 4.2. (i) K (x) : R → [0, 1] is symmetric and satisfies K (0) = 1,
� ∞

0 xK (x) dx < ∞
and |K (x) − K (y) | ≤ C1 |x − y| for all x, y ∈ R and some C1 < ∞.

(ii) q0 ≥ 1 where q0 is the Parzen characteristic exponent defined by

q0 = max

q̃ : q̃ ∈ Z+, K q̃ = lim
x→0

1 − K (x)
|x|q̃

< ∞

 .

(iii) K (x) is positive semidefinite, i.e., for any square integrable function g (x),
� ∞

0

� ∞
0 K (s − t)

g (s) g (t) dsdt ≥ 0.

All of the commonly used kernels with the exception of the truncated kernel satisfy Assump-

tion 4.2-(i, ii). Sun et al. (2008) required piecewise smoothness on K (·) instead of the Lipschitz

condition. Part (iii) ensures that the associated LRV estimator is positive semidefinite. The com-

monly used kernels that satisfy part (i, iii) are the Bartlett, Parzen and quadratic spectral (QS)

kernels. For the Bartlett kernel, q0 = 1, while for the Parzen and QS kernels, q0 = 2.

As in Sun et al. (2008), we present the asymptotic expansion for the test statistic studentized

by Ω̂fixed−b defined in (2.6). Let Kb = K (·/b). Lemma S.A.1 in the supplement extends Theorem

3.1 to Ω̂fixed−b using the kernels that satisfy Assumption 4.2. Under Assumption 2.1 and 4.1-4.2,

13
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Lemma S.A.1 shows that Ω̂fixed−b ⇒ Gb where

Gb =
� 1

0

� 1

0
Kb (r − s) dB̃1 (r) dB̃1 (s) ,

and

B̃1 (r) =
� r

0

(
Σ (u) dW1 (u) − r

(� 1

0
Σ (u) dW1 (u)

))
.

Let CΩ = sups∈[0, 1] Ω (s), C2,Ω = max{CΩ, 1},

tfixed−b ≜

√
T
(
β̂ − β0

)
√

Ω̂fixed−b

,

and

Ĝb =
� 1

0

� 1

0
Kb (r − s)

(� r

0
Σ̂ (u) dW1 (u) − r

� 1

0
Σ̂ (u) dW1 (u)

)

×
(� s

0
Σ̂ (u) dW1 (u) − s

� 1

0
Σ̂ (u) dW1 (u)

)
drds.

Theorem 4.1. Let Assumption 2.1, 4.1-4.2, h1 → 0, h2 → 0, Th1h2 → ∞ and
√

Th1h2 (h2
1 + h2

2) →
0 hold. Provided that b is fixed such that b < 1/(16C2,Ω

� ∞
−∞ |K (x) |dx), we have

sup
z∈R+

∣∣∣∣∣∣P (|tfixed−b| ≤ z) − P

∣∣∣∣∣∣
� 1

0 Σ̂ (u) dW1 (u)√
Ĝb

∣∣∣∣∣∣ ≤ z

∣∣∣∣∣∣ = O
(
(Th1h2)−1/2

)
.

Comments: 1. Theorem 4.1 shows that the ERP associated to tfixed−b is O((Th1h2)−1/2). This
is an order of magnitude larger than the ERP associated to tfixed−b under stationarity, O(T −1),
where the latter was established by Jansson (2004) and Sun et al. (2008). The increase in the ERP

of tfixed−b is the price one has to pay for not having a pivotal distribution under nonstationarity.

This is intuitive. Without a pivotal distribution, one has to obtain estimates of the nuisance

parameters. However, the nuisance parameters can be consistently estimated only under small-b

asymptotics. The latter estimates enjoy a nonparametric rate of convergence which then results in

a larger ERP since it is the discrepancy between these estimates and their probability limits that

is reflected in the leading term of the asymptotic expansion.
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2. The conventional fixed-b methods use a fixed bandwidth and the critical value from the

pivotal fixed-b limiting distribution obtained under the assumption of stationarity. Our results

suggest that the ERP associated to such fixed-b HAR tests is O (1). This follows because that

critical value is not theoretically valid, i.e., it is from the pivotal fixed-b limiting distribution which,

however, is different from the non-pivotal fixed-b limiting distribution under nonstationarity. Thus,

as T → ∞ the ERP does not converge to zero, implying large distortions in the null rejection rates

even for unbounded sample sizes.

3. It is useful to compare Theorem 4.1 with the results for the ERP associated to tHAC. Under

stationarity Velasco and Robinson (2001) showed that the ERP associated to tHAC is O((TbT )−1/2)
where bT → 0. Casini et al. (2023) showed that under nonstationarity the ERP associated to tHAC

has the same order as under stationarity, i.e., O((TbT )−1/2). Thus, it is sufficient to compare

O((Th1h2)−1/2) and O((TbT )−1/2). Since h1 and bT are the bandwidths used for smoothing over

lagged autocovariances, they may have a similar order. It follows that the ERP associated to tfixed−b

may be larger than that associated to tHAC. In addition, the ERP associated to tfixed−b based on

conventional fixed-b methods that rely on stationarity is much larger than the ERP associated to

tHAC since the former is O (1).
4. A more recent development in the literature [see, e.g., Sun (2014) and Lazarus et al.

(2018)] considered the use of small-b asymptotics (i.e., small-bandwidths) and fixed-b critical values.

These bandwidths are typically larger than the MSE-optimal bandwidths used for tHAC [see eq.

(3) in Lazarus et al. (2018), and the equation for b∗ on p. 666 of Sun (2014) and the related

discussion there]. As bT → 0 the fixed-b limiting distribution approximates the standard asymptotic

distribution based on small-b asymptotics. Thus, the fixed-b critical values converge to the standard

normal critical values for the case of a t-test. In the limit the ERP of these HAR tests should

be the same as that of tHAC. However, recent simulation results in the literature show that these

HAR tests have different finite-sample rejection probabilities from those of tHAC. Hence, although

the result in Theorem 4.1 only speaks for fixed-bandwidths, it might suggest that using the fixed-b

critical values from the new fixed-b limiting distribution may improve the finite-sample performance

of these recent fixed-b methods under nonstationarity.

5. Theorem 4.1 implies that the theoretical properties of fixed-b inference changes substan-

tially depending on whether the data are stationarity or not. In particular, it suggests that the

approximations based on fixed-b asymptotics obtained under stationarity in the literature are not

valid and do not provide a good approximation when stationarity does not hold. This contrasts

to HAR inference tests based on consistent long-run variance estimators which are valid also un-
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der nonstationarity and have the same asymptotic distribution regardless of whether the data are

stationary or not.5 Theorem 4.1 also provides formal support to the arguments in Ibragimov and

Müller (2010) and Müller (2014) who mentioned that the stationarity assumption used by fixed-b

methods is a disadvantage relative to conventional methods including the t-statistic approach.

6. Overall, the theoretical results contrast with what the early fixed-b literature showed under

stationarity [see Jansson (2004)], namely that the original fixed-b HAR inference is theoretically

superior to HAR inference based on consistent long-run variance estimators.

7. Our theoretical results complement the recent finite-sample evidence in Belotti et al.

(2023), Casini (2023b), Casini and Perron (2021) and Casini et al. (2023). Their simulation results

showed that existing fixed-b HAR inference tests perform poorly in terms of the accuracy of the

null rejection rates and of power when stationarity does not hold. They considered t-tests in the

linear regression models and HAR tests outside the linear regression model, and a variety of data-

generating processes. They provided evidence that fixed-b HAR tests can be severely undersized

and can exhibit non-monotonic power. Some of these issues are generated by the low frequency

contamination induced by nonstationarity which biases upward each sample autocovariance Γ̂ (k).
Since Ω̂fixed−b uses many lagged autocovariances as b is fixed, it is inflated which then results in

size distortions and lower power.

8. The fixed-b limiting distribution under nonstationarity is complex to use in practice as it

depends in a complicated way on nuisance parameters. The procedure in Theorem 4.1 replaces the

nuisance parameter Σ (·) by a consistent estimate. This procedure represents a natural starting

point to study the properties of fixed-b inference under nonstationarity and so the corresponding

ERP results may provide general guidance. There are certainly other procedures that could be

used. It is beyond the scope of the paper to investigate how best to use the non-pivotal fixed-b

limiting distribution. If one wants to consider other procedures such as finding a conservative

upper bound for the critical value that holds under all possible values of the nuisance parameter,

bootstrap-based autocorrelation robust tests, modification of the test statistic6, etc., then one has

to face the challenge that these methods are not as simple as HAC-based inference which can be

a disadvantage as recently argued by Lazarus et al. (2021). Future work should investigate on

possible alternative fixed-b procedures that exploit the results in Section 3.

9. The requirement Th1h2 → ∞ is a standard condition for consistency of nonparametric

5It is useful to remind that even though they are generally valid their finite-sample performance can be poor if
there is strong dependence under either stationarity or nonstationarity as documented in the literature.

6Hwang and Sun (2017) proposed a modification to the trinity of test statistics in the two-step GMM setting
and showed that the modified test statistics are asymptotically F distributed under fixed-b asymptotics.
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estimators such as Ω̂ (u). The requirement b < 1/(16C2,Ω
� ∞

−∞ |K (x) |dx) is similar to the one used

by Sun et al. (2008). It can be relaxed at the expenses of more complex derivations.

10. As remarked in the last paragraph of Section 3, for unconditionally heteroskedastic ran-

dom variables, standard fixed-b HAR inference is infeasible. Thus, the associated ERP does not

convergence to zero. In contrast, HAR inference based on consistent long-run variance estimator

is valid and the associated ERP is again O((TbT )−1/2) with bT → 0.

5 Finite-Sample Effectiveness of the Limit Theory

In this section we conduct a Monte Carlo analysis to evaluate the effectiveness of the theoretical

results of Section 3-4. We consider the empirical null rejection rates and local power of the t-

statistic in a simple location model:

yt = β0 + et, t = 1, . . . , T.

We consider the following data-generating processes for et. In model M1 we specify et as an AR(1)

with a break in the autoregressive coefficient,

et =

0.8et−1 + ut, t ≤ 0.2T

0.3et−1 + ut, t > 0.2T
,

where ut ∼ i.i.d. N (0, 1) and e0 ∼ N (0, 1). Further, the initial condition of et in the second

regime is not the realized e0.2T but we set e0.2T ∼ N (0, 1) so that the two regimes are independent.7

Model M2 involves a locally stationary AR(1):

et = ρtet−1 + ut, ρt = 0.85 cos (1.5t/T ) ,

where ut ∼ i.i.d. N (0, 1) and e0 ∼ N (0, 1). Note that ρt varies between 0.055 to 0.850. In model

M3 we consider a stationary AR(1) et = 0.9et−1 + ut where ut ∼ i.i.d. N (0, 1) and e0 ∼ N (0, 1).
We consider the following test statistic:

tb =
√

T
(
β̂ − β0

)
√

Ω̂b

,

7The results are unchanged when we use the realized e0.2T as the initial condition for the second regime.
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where β̂ = y = T −1∑T
t=1 yt and Ω̂b = Ω̂fixed−b as defined in (2.6) with the Bartlett kernel and

V̂t = yt − y. We set β0 = 0 and consider the null hypothesis that β0 ≤ 0 against the alternative

that β0 > 0. The results for a two-sided version of the test are qualitatively similar. We report the

results for the sample sizes T = 250, 500 and 5,000 replications were used in all cases. To illustrate

how the reference distribution works as the bandwidth b varies in finite-sample, we compute the

rejection probabilities for tb implemented using b = 0.02, 0.04, 0.06, . . . , 0.96, 0.98, 1. We set the

asymptotic significance level to 0.05 and consider the following critical values. The usual standard

normal critical value of 1.645 for all values of b; the critical value from the stationary fixed-b

distribution in Kiefer and Vogelsang (2005) for the corresponding b; the critical values from the

infeasible and feasible nonstationary fixed-b distribution for the corresponding b. The infeasible

version is obtained by simulating the distribution in Theorem 3.2 with the true value of Σ (u) and
Q (u). Note that in our setting Q (u) = 1 for all u. The feasible version is obtained by simulating the

distribution in Theorem 3.2 where Σ (u) is replaced by Σ̂ (u) defined in (4.3) with h1 = (Th2)−4/5

and h2 = T −1/3, Kh1 is Bartlett kernel and Kh2 is the rectangular kernel. Other choices for h1

and h2 that satisfy the conditions of Theorem 4.1 are possible. However, we verified in unreported

simulations that the empirical rejection probabilities are only very marginally sensitive to the

choice of h1 and h2 (i.e., within the ±1% range about the ones reported below). In particular, any

combination of (h1, h2) leads to empirical rejection rates that are more accurate than those from

the stationary fixed-b distribution of Kiefer and Vogelsang (2005). Similarly, different choices for

the kernels Kh1 and Kh2 yield quantitative similar results. We do not report them for brevity.

The results about the null rejection rates are depicted in Figures 1-6. In each figure, the

line with the label, N (0, 1), plots the rejection probabilities when the critical value 1.645 is used.

The figures also depict plots of the rejection probabilities using the stationary fixed-b asymptotic

critical values and the infeasible and feasible nonstationary fixed-b asymptotic critical values. The

results are striking. In the nonstationary models M1 and M2 the stationary fixed-b method yields

rejection rates that are substantially below the significance level for all values of b except for b very

small.8 The latter feature is expected since for small b the fixed-b asymptotic theory reduces to the

small-b asymptotics, or the fixed-b distribution reduces to the standard normal distribution. Given

that a small b means that a small number of sample autocovariances are used in Ω̂b, we expect

the test statistic to over-reject.9 In contrast, both the infeasible and feasible nonstationary fixed-b

distributions lead to empirical rejection rates that are very close to 0.05 for all values of b except

for b very small. Interestingly, for T = 500 the stationary fixed-b critical values yield rejection

8This is consistent with the empirical results in Casini et al. (2023).
9This feature also appeared in the simulations of Kiefer and Vogelsang (2005).
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rates that are worse than for T = 250, i.e., the under-rejection becomes more pronounced with a

larger the sample size. This does not happen when the nonstationary fixed-b critical values are

used, in fact they yield more accurate rejection rates as the sample size increases. Hence, these

results corroborate the relevance of the nonstationary fixed-b distribution theory relative to the

stationary fixed-b distribution theory when the data are nonstationary.

The pattern of the rejection rates when the standard normal critical value is used is similar to

that found by Kiefer and Vogelsang (2005). When b is small, there are substantial over-rejections.

The rejections fall as b increases but then rise again as b increases further. For all values of b the

rejection rates are beyond 0.05. This confirms the size distortions documented in the literature

and that the accuracy of the small-b asymptotics depends on b.

It is useful to analyze the performance of the nonstationary fixed-b distribution when the data

are indeed stationary with strong dependence. The results are reported in Figure 5-6. First note

that Theorem 3.2 implies that when the data are stationary the nonstationary fixed-b distribution

reduces to the stationary fixed-b distribution obtained by Kiefer and Vogelsang (2005). In fact, the

figures show that the rejection rates corresponding to the infeasible nonstationary fixed-b critical

values coincide with those corresponding to the stationary fixed-b critical values. As it is well-

known, the standard normal critical value leads to large over-rejections for all b. In contrast, the

empirical rejection rates corresponding to either fixed-b critical values are much more accurate.

The feasible nonstationary fixed-b critical values yield rejection rates that are essentially the same

as the ones from the stationary fixed-b distribution. For b ∈ [0.2, 1] the rejection rates of either

fixed-b method are stable and therefore equally accurate. For small values of b also the fixed-b

critical values yield over-rejections. This is obvious since a small b does not correspond to a fixed-b

asymptotic theory with b required to be fixed. Rather, the fixed-b distribution approximates the

standard normal distribution as b → 0 and so no gain is expected from using the fixed-b critical

values for values of b that are too small.

Let us comment on the difference between the infeasible and feasible nonstationary fixed-b

inference. The proof of Theorem 4.1 suggests that the infeasible fixed-b distribution enjoys a smaller

ERP than its feasible counterpart. The feasible fixed-b method depends on the nonparametric

estimators of Σ (u) and Q (u) which in turn depend on the choice of h1 and h2. However, as noted

above, the rejection rates are not much sensitive to the choice of h1 and h2. For the reported results,

the performance of the feasible inference is not very different from that of the infeasible inference.

The feasible inference is slightly more accurate in model M1-M2 and slightly less in model M3.

Our unreported simulations involving other choices of h1 and h2 showed that the feasible inference
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can often be slightly worse than the infeasible inference as the theory would suggest.

We now move to discuss the local power results. We consider the following null and alternative

hypotheses

H0 : β0 ≤ 0 vs. H1 : β0 = cT −1/2,

where c = δ
√

Ω > 0 is a constant. The local power is computed for δ = 0, 0.2, 0.4, . . . , 4.8, 5 using

5% asymptotic null critical values. What we report is the size-unadjusted power. We only report

the results for model M1 since the results for model M2-M3 are qualitative similar. Figure 7 and

9 plot the power across methods for a given value of b. Figure 8 plots the power across values of b

for a given method. The power corresponding to the standard normal critical value is much higher

than that associated to the fixed-b methods. This is intuitive given that the standard normal

critical value leads to oversized tests. Hence, it is fair to focus on the power comparison between

the stationary fixed-b method and the infeasible and feasible nonstationary fixed-b methods since

they are not oversized. The figures show that the power gain from using the nonstationary fixed-b

critical values is roughly 10% for T = 250 and roughly 15% for T = 500. All tests have monotonic

power and as δ increases the power differences become smaller and smaller. These features continue

to hold for model M2. Thus, the under-rejections of the stationary fixed-b inference lead to power

losses relative to the nonstationary fixed-b inference. In model M3 the power functions associated

to the stationary and nonstationary fixed-b methods are essentially the same. Thus, there is no

loss in using the nonstationary fixed-b inference when the data are stationary.

To sum up, the theoretical results of Section 3-4 provide useful predictions about the finite-

sample accuracy of the stationary and nonstationary fixed-b distributions. The nonstationary

fixed-b distribution yields empirical null rejection rates that are accurate for both stationary and

nonstationary data. The stationary fixed-b distribution yields null rejection rates that are substan-

tially below the significance level when the data are nonstationary. It follows that its corresponding

power is lower than that associated to the nonstationary fixed-b distribution.

Finally, recent works by Casini (2023b) and Casini et al. (2023) showed that in the context of

nonstationary alternative hypotheses the stationary fixed-b method as well as the traditional small-

b HAC methods exhibit non-monotonic power. This involves testing problems outside the linear

regression (e.g., tests for structural breaks, time-varying parameters and regime switching, and tests

for forecast evaluation). By construction the ERP results in Section 4 are only relevant for the

size properties of the tests and thus are not suitable for nonstationary alternative hypotheses. We

verified via simulations that also the nonstationary fixed-b method can suffer from non-monotonic
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power in those contexts, though by a smaller extent. The only methods that have monotonic power

are those based on the DK-HAC estimators of Casini (2023b). Hence, it would be interesting to

combine the DK-HAC estimation with the nonstationary fixed-b asymptotics in future research.

6 Conclusions

This paper has shown that the theoretical properties of fixed-b HAR inference change depending

on whether the data are stationary or not. Under nonstationarity we established that fixed-b HAR

test statistics have a limiting distribution that is not pivotal and that their ERP is an order of

magnitude larger than that under stationarity and can be larger than that of HAR tests based on

traditional HAC estimators. These theoretical results reconcile with recent finite-sample evidence

showing that fixed-b HAR test statistics can perform poorly when the data are nonstationary,

both in terms of distortions in the null rejection rates and of non-monotonic power. Overall, the

results highlight a new facet of the trade-off between size and power in HAR inference, i.e., the

methods that achieve better null rejection rates under stationarity are the ones that suffer more

from under-rejection under nonstationarity (i.e., time-varying autocovariance structure), and vice-

versa. A new inference method based on the nonstationary fixed-b distribution is proposed and

it is shown to provide accurate null rejection rates for hypothesis testing in the linear regression

model irrespective of whether the data are stationary or not and of the strength of the dependence.

Supplemental Materials

The supplement for online publication [cf. Casini (2023a)] contains the proofs of the results.
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7 Appendix

7.1 Figures
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Figure 1: Small-sample null rejection rates for model M1. The sample size is T = 250.
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Figure 2: Small-sample null rejection rates for model M1. The sample size is T = 500.
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Figure 3: Small-sample null rejection rates for model M2. The sample size is T = 250.
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Figure 4: Small-sample null rejection rates for model M2. The sample size is T = 500.
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Figure 5: Small-sample null rejection rates for model M3. The sample size is T = 250.
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Figure 6: Small-sample null rejection rates for model M3. The sample size is T = 500.
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Figure 7: Small-sample size-unadjusted power for model M1. The sample size is T = 250.
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Figure 8: Small-sample size-unadjusted power for model M1. The sample size is T = 250.
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Figure 9: Small-sample size-unadjusted power for model M1. The sample size is T = 500.

26



fixed-bandwidth har inference

References

Aldous, D., 1978. Stopping times and tightness. Annals of Probability 6, 335–340.

Andrews, D.W.K., 1991. Heteroskedasticity and autocorrelation consistent covariance matrix es-

timation. Econometrica 59, 817–858.

Andrews, D.W.K., Monahan, J.C., 1992. An improved heteroskedasticity and autocorrelation

consistent covariance matrix estimator. Econometrica 60, 953–966.

Belotti, F., Casini, A., Catania, L., Grassi, S., Perron, P., 2023. Simultaneous bandwidths determi-

nation for double-kernel HAC estimators and long-run variance estimation in nonparametric

settings. Econometric Reviews 42, 281–306.

Bunzel, H., Vogelsang, T.J., 2005. Powerful trend function tests that are robust to strong serial

correlation, with an application to the Prebisch-Singer hypothesis. Journal of Business and

Economic Statistics 23, 381–394.

Casini, A., 2023a. Supplement to ”the Fixed-b limiting distribution and the ERP of HAR tests

under nonstationarity”. Unpublished Manuscript, Department of Economics and Finance

University of Rome Tor Vergata.

Casini, A., 2023b. Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust

inference in possibly misspecified and nonstationary models. Journal of Econometrics, 235,

372–392.

Casini, A., Deng, T., Perron, P., 2023. Theory of low frequency contamination from nonstationarity

and misspecification: consequences for HAR inference. arXiv preprint arXiv:2103.01604.

Casini, A., Perron, P., 2021. Prewhitened long-run variance estimation robust to nonstattionarity.

arXiv preprint arXiv:2103.02235.

Hansen, B., 1992. Consistent covariance matrix estimation for dependent heterogeneous processes.

Econometrica 60, 967–972.

Hwang, J., Sun, Y., 2017. Asymptotic F and t tests in an efficient GMM setting. Journal of

Econometrics 198, 277–295.

Ibragimov, R., Müller, U.K., 2010. t-statistic based correlation and heterogeneity robust inference.

Journal of Business and Economic Statistics 28, 453–468.

Jansson, M., 2004. The error in rejection probability of simple autocorrelation robust tests. Econo-

metrica 72, 937–946.

de Jong, R.M., Davidson, J., 2000. Consistency of kernel estimators of heteroskedastic and auto-

correlated covariance matrices. Econometrica 68, 407–423.

Kiefer, N.M., Vogelsang, T.J., 2002a. Heteroskedasticity-Autocorrelation Robust Testing Using

27



alessandro casini

Bandwidth Equal to Sample Size. Econometric Theory 18, 1350–1366.

Kiefer, N.M., Vogelsang, T.J., 2002b. Heteroskedasticity-autocorrelation robust standard errors

using the Bartlett kernel without truncation. Econometrica 70, 2093–2095.

Kiefer, N.M., Vogelsang, T.J., 2005. A new asymptotic theory for heteroskedasticity-

autocorrelation robust tests. Econometric Theory 21, 1130–1164.

Kiefer, N.M., Vogelsang, T.J., Bunzel, H., 2000. Simple robust testing of regression hypotheses.

Econometrica 69, 695–714.

Lazarus, E., Lewis, D.J., Stock, J.H., 2021. The size-power tradeoff in HAR inference. Economet-

rica 89, 2497–2516.

Lazarus, E., Lewis, D.J., Stock, J.H., Watson, M.W., 2018. HAR inference: recommendations for

practice. Journal of Business and Economic Statistics 36, 541–559.
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