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Abstract

In the context of a linear regression model with a single break point, we develop a continuous
record asymptotic framework to build inference methods for the break date. We have T' observations
with a sampling frequency h over a fixed time horizon [0, N], and let T — oo with A | 0 while
keeping the time span NV fixed. We consider the least-squares estimate of the break date and establish
consistency and convergence rate. We provide a limit theory for shrinking magnitudes of shifts and
locally increasing variances. The asymptotic distribution corresponds to the location of the extremum
of a function of the quadratic variation of the regressors and of a Gaussian centered martingale process
over a certain time interval. We can account for the asymmetric informational content provided by
the pre- and post-break regimes and show how the location of the break and shift magnitude are key
ingredients in shaping the distribution. We consider a feasible version based on plug-in estimates,
which provides a very good approximation to the finite sample distribution. We use the concept of
Highest Density Region to construct confidence sets. Overall, our method is reliable and delivers
accurate coverage probabilities and relatively short average length of the confidence sets. Importantly,
it does so irrespective of the size of the break.
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1 Introduction

In the context of a linear regression model with a single break point, we develop a continuous
record asymptotic framework and inference methods for the break date. Our model is specified
in continuous time but estimated with discrete-time observations using a least-squares method.
We have T observations with a sampling frequency h over a fixed time horizon [0, N], where
N = Th denotes the time span of the data. We consider a continuous record (or infill) asymptotic
framework whereby T' increases by shrinking the time interval h to zero while keeping the time
span N fixed. We impose very mild conditions on an underlying continuous-time model assumed
to generate the data, basically continuous It6 semimartingales.

An extensive amount of research addressed change-point problems under the classical large- N
asymptotics. Early contributions are Hinkley (1971), Bhattacharya (1987), and Yao (1987), who
adopted a Maximum Likelihood (ML) approach, and for linear regression models, Bai (1997) and
Bai and Perron (1998). See the reviews of Perron (2006), Aue and Hoérvath (2013), Casini and
Perron (2019) and references therein. In this literature, the resulting large- N limit theory for the
estimate of the break date depends on the exact distributions of the regressors and disturbances.
Therefore, a so-called shrinkage asymptotic theory was adopted whereby the magnitude of the
shift, say dr, converges to zero which leads to a pivotal limit distribution.

We study a general change-point problem under a continuous record asymptotic framework
and develop inference procedures based on the derived asymptotic distribution. We establish
consistency at rate-T convergence for the least-squares estimate of the break date, assumed to
occur at time N?. Given the fast rate of convergence, we introduce a limit theory with shrinking
magnitudes of shifts and increasing variance of the residual process local to the change-point. The
asymptotic distribution corresponds to the location of the extremum of a function of the (quadratic)
variation of the regressors and of a Gaussian centered martingale process over some time interval.
It is characterized by some notable aspects. With the time horizon [0, N] fixed, we can account
for the asymmetric informational content provided by the pre- and post-break observations, i.e.,
the time span and the position of the break date Ny convey useful information about the finite-
sample distribution. In contrast, this is not achievable under the large-/N shrinkage asymptotic
framework because both pre- and post-break segments expand proportionately as T" increases and,
given the mixing assumptions imposed, only the neighborhood around the break date remains
relevant. Further, the domain of the extremum depends on the position of the break NY relative
to N, or total span, and thus the distribution is asymmetric, in general. The degree of asymmetry
increases as the true break point moves away from mid-sample. This holds unless the magnitude
of the break is large, in which case the density is symmetric irrespective of the location of the
break. This accords with simulation evidence which documents that the break point estimate is

less precise and the coverage rates of the confidence intervals less reliable when the break is not at



mid-sample [see, e.g., Chang and Perron (2018)]. When the shift magnitude is small, the density
displays three modes. As the shift magnitude increases, this tri-modality vanishes. We show via
simulations that all of these features are shared by the finite-sample distribution of the least-squares
estimator of the break date. Hence, the continuous record asymptotics theory provides an accurate
approximation to the finite-sample distribution of the break date estimator. In contrast, we show
that the large- N shrinkage asymptotic distribution of Yao (1987) and Bai (1997) provides a poor
approximation to the finite-sample distribution and does not share any of those features.

Our asymptotics can be seen as intermediate between the shrinkage asymptotics and more
recent approaches relying on weak identification [see e.g., Elliott and Miiller (2007) and Elliott,
Miiller and Watson (2015)]. On the one hand, using the usual shrinking condition of Yao (1987)
and Bai (1997) for which the break magnitude 67 goes to zero at a rate slower than O(7~/2)
leads to underestimation of the uncertainty about the break date. On the other hand, the weak
identification condition of Elliott and Miiller (2007) for which dr goes to zero at a fast rate (i.e.,
57 = O(T~Y/?), so that the change-point cannot be consistently estimated) leads to overstating
the uncertainty. This has opposite consequences for the confidence intervals of the break date.
Confidence sets have poor coverage probabilities when the break is small under Bai’s framework
while they can be too wide under that of Elliott and Miiller (2007). In this paper, the key is not
to focus our asymptotic experiment on shrinking condition on dr but to make assumptions on the
signal-to-noise ratio dr /oy instead, where o; is the volatility of the errors. We require dr to go to
zero at a slower rate than that of Elliott and Miiller (2007)—to guarantee strong identification—
and require o; to increase without bound when t approaches the break date Tp. This offers a new
characterization of the uncertainty without compromising strong identification and consistency of
the model parameters needed to conduct inference.

Despite the effort devoted to the construction of confidence intervals for the break date [see
e.g., Bai and Perron (1998), Elliott and Miiller (2007) and Eo and Morley (2015)], what is still
missing is a method that, for both large and small breaks, achieves both accurate coverage rates
and satisfactory average lengths. The most popular method is that of Bai and Perron (1998)
which yields confidence intervals that are relatively short but have good coverage only when the
magnitude of the break is not small. However, both small and large breaks are relevant for empirical
work; breaks that are statistically small can still be practically relevant.

Given the peculiar properties (e.g., multi-modality and asymmetry) of the continuous record
asymptotic distribution, we propose a non-standard inference procedure related to Bayesian anal-
yses. We use the concept of Highest Density Region to construct confidence sets for the break
date. Our method has good coverage and length across all break magnitudes. This has important
implications for empirical work because the user can be confident that our confidence interval in-
cludes the true value across all break sizes. For small breaks, the length of the confidence intervals
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informative because it reveals that there is high uncertainty about the change-point. The same
information cannot be provided by existing methods either because they do not have good coverage
unless the break is not small [e.g., Bai and Perron (1998)] or because they have a large length even
when the break is not small [e.g., Elliott and Miiller (2007)].

We use the continuous record asymptotics to provide an alternative approximation to the
finite-sample distribution of the least-squares estimator of the break date based on discrete-time
data. This creates no contradiction since asymptotic theory is intended as a thought experiment
used to obtain approximations to the distribution of estimators or test statistics. The continuous
record asymptotics has proven to be useful in other discrete-time settings such as in the context
of unit roots [cf. Phillips (1987) and Perron (1991)] and nonparametric regression [cf. Brown and
Low (1996)]. Brown and Low (1996) showed the asymptotic equivalence between a nonparametric
regression problem and a white noise with drift problem.

Our empirical applications of interest involve regression models using time series data sampled
at, say, annual, quarterly, monthly and daily frequency (i.e., the same empirical settings considered
in the long-span structural break literature). For ultra high-frequency data (i.e., intra-daily data)
one would need to account for features such as jumps, market microstructure noise, etc. This
would require some extension/modification of our method. For example, one should apply some
techniques to remove the jumps and consider coefficient estimators that are built on spot volatility
estimators rather than on integrated volatility. To show the empirical usefulness of our approach,
we apply our inference methods to construct the confidence sets about the break dates in monthly
U.S. industrial production growth. The results show that the proposed confidence set works well
and have better properties than existing methods.

Recent work in change-point analysis has focused on estimation when the number of change-
points is allowed to increase with the sample size [e.g., Fryzlewicz (2014)] and when the change-
point is allowed to approach the start and end sample point. A growing literature has also con-
sidered change-points in a high-dimensional setting [e.g., Lee, Seo and Shin (2016), Leonardi and
Bithlmann (2016), Wang, Lin and Willett (2019a) and Wang, Yu, Rinaldo and Willett (2019b)].
This work is mainly concerned with consistent estimation of the change-point dates and develop-
ment of corresponding computational algorithms. Our focus is on asymptotic theory and inference
within the classical change-point model with a single break. Our results can also have useful im-
plications for the growing literature on inference in high-dimensional change-point analysis and for
the literature on threshold regression [see, e.g., Hansen (2000) and Hidalgo, Lee and Seo (2019)].

This paper relates to other work by the authors. Casini and Perron (2021b) used the asymp-
totic results developed in this paper and proposed a new Generalized Laplace estimator of the
break date under a continuous record asymptotic framework. Casini and Perron (2020b) analyzed
the Generalized Laplace method under classical asymptotics and focused on the theoretical rela-

tionship between the asymptotic distribution of frequentist and Bayesian estimators of the break



point. Finally, Chambers and Taylor (2019) considered both deterministic one-time change and
continuous stochastic parameter change in a continuous-time autoregressive model while Casini
(2018) introduced continuous-time asymptotics to test for forecast failure. Casini and Perron
(2021a) considered testing for and estimating change-points in a locally stationary process using
frequency-domain methods.

The paper is organized as follows. Section 2 introduces the model and the estimation method.
Section 3 contains results about the consistency and rate of convergence for fixed shifts. Section 4
develops the asymptotic theory. We compare our limit theory with the finite-sample distribution
in Section 5. Section 6 describes how to construct the confidence sets, with simulation results
reported in Section 7. An empirical application is presented in Section 8. Section 9 provides brief
concluding remarks. The Supplement [Casini and Perron (2021c)] contains the proofs as well as

additional material.

2 Model and Assumptions

We denote the transpose of a matrix A by A’ and the (i, j) elements of A by A®). We use |||
to denote the Euclidean norm of a linear space, i.e., ||z]| = (X, 1'22)1/2 for x € RP. We use |-]
to denote the largest smaller integer function. A sequence {u,},_, is i.i.d. (vesp., i.n.d) if the
ugp, are independent and identically (resp., non-identically) distributed. We use £>, =, and 5 to
denote convergence in probability, weak convergence and stable convergence in law, respectively.
For semimartingales {S;},., and {R;},,, we denote their covariation process by [S, R], and their
predictable counterpart by (S, R),. The symbol “27 denotes definitional equivalence.

Consider a classical partial change-point model with a single break point:

Y, =Dy’ + Z{oy, +e, (t=0,1,...,T)) (2.1)
Y, =Dp’ + Z{0y,+e, (=T +1,...,7),

where Y; is the dependent variable, D, and Z; are, respectively, ¢ x 1 and p x 1 vectors of re-
gressors and e; is an unobservable disturbance. The vector-valued parameters v?, 8% | and 47, are
unknown with 0%, # d%,. Our main purpose is to develop inference methods for the unknown
change-point date 7)) when T + 1 observations on (Y;, Dy, Z;) are available. Before moving to the
re-parametrization of the model, we discuss the underlying continuous-time model assumed to gen-
erate the data. The discrete-time variables are assumed to be generated from the continuous-time
processes {Ds, Zs, es}s>0 defined on a filtered probability space (€2, .#, (%s)s>0, P).

The sampling occurs at regularly spaced time intervals of length h within a fixed time horizon
[0, N| where N denotes the span of the data. We observe {;Yin, nDkn, nZkn; k=0, 1,..., T = N/h},

with , Dy, € RY and ,Zg, € RP are random vector step functions which jump only at times
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0, h,..., Th. We shall allow ,Dy;, and ,Zy, to include both predictable processes and locally-
integrable semimartingles, though the case with predictable regressors is more delicate and dis-
cussed in the supplement. The discretized processes Dy, and ,Zy, are adapted to {L%}tzo.
As a matter of notation, hereafter we use t, s € [0, N] as indices of continuous time while we
use k = 0,1,..., T = N/h as the index of discrete-time. For any process X we denote its
“increments” by A, Xy = Xy, — Xg_p. For k = 1,...,T, let AyDy £ pprh + Ap,Mpj and
A7, 2 pzih + ApMzy where the “drifts” pup, € RY, uz, € RP are .#,_j-measurable, and
Mpy € RY, My, € RP are continuous local martingales with finite conditional covariance matrix
P-as., E(AyMpApyMp | Fi 1) = Xpy-nAt and E(A, Mz ApyMy | Fy ) = Xz nAt (At and h
are used interchangeably). Let Ay € (0, 1) denote the fractional break date (i.e., T = |T'\o]). Via

the Doob-Meyer Decomposition, we can write the model as

(AnDy) v + (AnZy) 6%, + Apef, (k=1,...,[TAo)),

AyYy &
(AnDR) V0 + (AnZ1) 655 + Anef, (k= 1[Tho] +1,...,T),

(2.2)

where the error process {Ane;, Z} is a continuous local martingale difference sequence with
conditional variance E[(Ane) | Fiy] = 07, At P-as. finite. The underlying continuous-time

data-generating process can thus be represented (up to P-null sets) in integral equation form as

t t t t
D, = Dy +/ ip,sds +/ 0p,sdWps, Zy = Zy +/ fz,sds + / 02,:dWz s, (2.3)
0 0 0 0

where op; and oz, are the instantancous covariance processes taking values in Mffdlag and M;édlag
[the space of p x p positive definite real-valued matrices whose elements are cadlag]; Wp (resp.,
Wyz) is a q (resp., p)-dimensional standard Wiener process; e* = {e;},., is a continuous local
martingale which is orthogonal (in a martingale sense) to {D;},., and {Zt}tzo; and Dy and Z
are Zy-measurable random vectors. In (2.3), fg ip,sds is a continuous adapted process with finite
variation paths and fot op.sdWp s corresponds to a continuous local martingale. Thus, (2.3) implies

that D; and Z; are continuous semimartingales.

Assumption 2.1. (i) ppy, pizy, Opy and 0z, satisfy P-a.s., SUp,cq gci<ry |10 (W)]| < 00, SUP,cq,
o<t<rr lze ()] < 00, SUPeq 0<i<ry loDs (W[ < 00 and sup,eq oci<ry loze (W) < 00 for some
localizing sequence {Tr} of stopping times. Also, op s and oz are cadlag; (ii) f(f ipsds and
fot pzsds belong to the class of continuous adapted finite variation processes; (iii) fg op,sdWp s
and fot 07sdWy s are continuous local martingales with P-a.s. finite positive definite conditional
variances (or spot covariances) defined by Xp; = opop, and Xz, = 07,0 ,, which for all t <
oo satisfy fot Eg”i)ds <oo (j=1,...,q) and fot Z(Zj,’g)ds < oo (j=1,...,p). Furthermore, for
everyj=1,...,¢q,r=1,....,p,andk=1,..., T, h! f(ilil)h Zg’f;)ds and h™1 (I;Ch_l)h Eg’g)ds are

bounded away from zero and infinity, uniformly in k and h.
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Part (i) restricts the processes to be locally bounded and part (ii) requires the drifts to be
adapted finite variation processes. These are standard regularity conditions in the high-frequency
statistics literature [cf. Barndorff-Nielsen and Shephard (2004)]. Part (iii) requires the regressors

to have finite integrated covariance.

. t . . ‘ .
Assumption 2.2. ef =S fo Oc,sdWe s with 0 < az’t < oo, where W, is a one-dimensional standard

Wiener process. Furthermore, (e, D), = (e, Z), = 0 identically for all t > 0.

Assumption 2.2 presents the continuous time representation of the error process and states
that the error process is uncorrelated with the regressors.

We rule out jump processes; hence, our results are not expected to provide good approxi-
mations for high-frequency data but for data sampled at lower frequencies. The use of ultra high
frequency data involves a host of issues that we cannot handle (e.g., market-microstructure, bid-ask
spread, volatility jumps, non-continuous sampling, etc.). However, our methods and results could
be extended. Although the raw least-squares method is not robust to jumps, it can be augmented
with threshold-holding techniques that detect the jumps. Further, since ultra high-frequency data
imply larger sample sizes one should modify the raw least-squares method for the regression coeffi-
cients so that the estimation is based on the integrated spot covariation (constructed over blocks of
ultra high-frequency observations) rather than just the full-sample covariation. The integrated spot
estimator was considered by Li, Todorov and Tauchen (2017) who proposed an optimal weighted
average of local nonparametric co-volatility estimates. Our main theoretical results should continue
to hold under this more general setting, though the proofs would be substantially more involved.

We leave these extensions for future research.
Assumption 2.3. X0 £ {4, ae,t}t>0 has P-a.s. continuous sample paths.

An interesting issue is whether the theoretical results to be derived for model (2.2) are ap-
plicable to classical structural change models for which an increasing span of data is assumed.
This requires establishing a connection between the assumptions imposed on the stochastic pro-
cesses in both settings. Roughly, the classical long-span setting uses approximation results valid
for weakly dependent data; e.g., ergodic and mixing procesess. Such assumptions are not needed
under our fixed-span asymptotics. Nonetheless, we can impose restrictions on the probabilistic
properties of the latent volatility processes in our model and thereby guarantee that ergodic and
mixing properties are inherited by the corresponding observed processes. This follows from Theo-
rem 3.1 in Genon-Catalot, Jeantheau and Laredo (2000) together with Proposition 4 in Carrasco
and Chen (2002). For example, these results imply that the observations {Zy},~, (with fixed h)
can be viewed (under certain conditions) as a hidden Markov model which inherits the ergodic and
mixing properties of {oz,},.,. Hence, our model encompasses those considered in the structural

change literature that uses a long-span asymptotic setting.
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In the context of predictive regression analyzed under long-span asymptotics, recent work
by Georgiev, Harvey, Leybourne and Taylor (2020) and Andersen and Varneskov (2021, 2022)
proposed tests for structural breaks and parameter instability that are robust to (near) unit roots
or nonstationary fractional integration. The new tests are constructed by modifying popular
structural break tests [e.g., the sup-Wald test of Andrews (1993)] to allow for such features. In
contrast, in our work we consider the original least-squares estimator of the break point but we
analyze its limiting distribution under a continuous record. We extend model (2.2) to allow for

predictable processes (e.g., a constant and/or lagged dependent variable) in the supplement.
Assumption 2.4. N) = N, for some A € (0, 1).

It is useful to re-parametrize model (2.2). Let ygr, = ApYs, xpn = (AnDy, AnZy)', zin = AnZy,

exn = Apeg, B0 = ((7°), (0%,)") and 6% = 0%, — 6%,. (2.2) can be expressed as:

Ykh = x;ghﬁo + €kh, (k =1,..., Tl?)? (24>
ykh:xgchﬁo+zl{ch5%+ekha (k:TZ?+177T)7

where the true parameter 8° = ((8°), (8%)’)’ takes value in a compact space @ C R4™(?  Also,
define zy, = R'xyyp, where R is a (¢ + p) X p known matrix with full column rank. We consider a
partial structural change model for which R = (0, I)’ with I an identity matrix.

Finally, we write the model in matrix format which will be useful for the derivations. Let
Y =Wn, -y yrn)s, X = (xp, ..., x7n), e = (eny ooy ern), X1 = (zp, ..., 20, 0, ..., 0)) Xo =
0, ..., 0, Z(ry41)hs - -, orn) and Xo = (0, ..., 0, (0 g1)ne - x7y)'. Note that the difference
between Xy and X, is that the latter uses Ty rather than TY. Define Z; = X R, Zy = X,R and
Zo = XR. (2.4) in matrix format is: Y = X %+ Z,0%+e. We consider the least-squares estimator of
Ty, i.e., the minimizer of St (T}), the sum of squared residuals when regressing Y on X and Zs over
all possible partitions, namely: T, LS = argmin,,, o7, <7 St (T3). It is straightforward to show that
T} = argming, oy, <7 Qr (Tp) where Qr (T}) £ 8 (Z3M Zs) b7, 0r, is the least-squares estimator
of §% when regressing Y on X and Zy, and M =1 — X (X’X)_1 X'. For brevity, we will write fb
for bes with the understanding that T, is a sequence indexed by T'. Let 5= gfb' The estimate of
the break fraction is then \, = 7,/T. Both in practice and for theoretical analyses, a trimming

parameter m € (0, 1/2) is applied to restrict the minimization over the interval [T'r, (1 — ) T.

3 Consistency and Convergence Rate under Fixed Shifts

We now establish the consistency and convergence rate of the least-squares estimator under fixed
shifts. Under the classical large-N asymptotics, related results have been established by Bai (1997)
and Bai and Perron (1998). Early important results for a mean-shift appeared in Yao (1987) and

7



Bhattacharya (1987) for an 4.i.d. series, Bai (1994) for linear processes and Picard (1985) for a

Gaussian autoregressive model.

Assumption 3.1. There ezists an ly such that for all | > ly, the matrices (Ih)™" Sk | Zpnahy,,
— 1 TP —1 TP+ . .
(Lh) ! ZLT_ZH TkhThp, (LR) ! Zkb:TngH TpnZhp, and (Lh) ! Zkb:T,?Jrl TkhThp, have minimum eigen-

values bounded away from zero in probability uniformly in h.

Assumption 3.2. Let Qo (Ty, 0°) £ E[Qr (Ty, °) — Qr (T2, 6°)]. There exists a Ty such that
Qo (T}, 0°) > sup(y, goyem Qo (Ty, 0°) , for every open set B that contains (Ty, 6°).

Assumption 3.1 is similar to A2 in Bai and Perron (1998) and requires enough variation
around the break point and at the beginning and end of the sample. The factor h~! normalizes
the observations so that the assumption is implied by a weak law of large numbers. Assumption

3.2 is a standard uniqueness identification condition. We then have the following results.
Proposition 3.1. Under Assumption 2.1-2./ and 3.1-53.2, b Eit Ao.

Proposition 3.2. Under Assumption 2.1-2.4 and 3.1-3.2 for any € > 0, there exists a K > 0 such
that for all large T, P(T ‘S\b — )\0‘ > K) <e.

We have the same T-convergence rate as under large-N asymptotics. Let 0° = ((3°)', (69)',
(69)')'. The fast T-rate of convergence implies that the least-squares estimate of §° is the same as
when ) is known. A natural estimator for 0° is argmingepy o sepe||Y — X8 — Z8||?, where we use
T, , instead of T in the construction of ZQ. Then we have the following result, akin to an extension
of the results in Barndorff-Nielsen and Shephard (2004) and Li et al. (2017).

Proposition 3.3. Under Assumption 2.1-2. and 3.1-3.2, we have as T — oo (N fized), (\/T/N(3—
8%, JT/N@ = 69)) 5 .. (0, V) where M N denotes a mized Gaussian distribution and V

is a positive definite .F -conditional asymptotic variance. If ¥., is independent of 0., then

ot

N N
V _ V fO EXvso—g,Sds ng EXszO—anS] V—I’

N 2 N 2
le? EZX,sae,sds fNIE) EZ,sUejst

and

fQN EX,sds f]if\; EXZ,st
b
ffvvg S x.sds fNNE ¥ y.eds

. !/
] , withXxzs = Ox,s07

V can be random because X.; and 0., can be stochastic. Under fixed shifts, Proposition
3.1-3.3 shows the asymptotic equivalence of discrete and continuous-time regression models with

a change-point, a result corresponding to Brown and Low (1996) for nonparametric regression.



4 Asymptotic Distribution under a Continuous Record

We now present results about the limiting distribution of the least-squares estimate of the break
date under a continuous record framework. As in the classical large-N asymptotics, it depends on
the exact distribution of the data and the errors for fixed break sizes [c.f., Hinkley (1971)]. This
has forced researchers to consider a shrinkage asymptotic theory where the size of the shift is made
local to zero as T increases, an approach developed by Picard (1985) and Yao (1987). We continue
with this avenue. Given the consistency result, we know that there exists some A* such that for
all h < h* with high probability nTh < N, < (1 —n)Th, for n > 0 such that Ay € (n, 1 —7n). By
Proposition 3.2, N, — N =0, (T™), ie., N, isin a shrinking neighborhood of Ny. With a certain
rescaling of the objective function one can first obtain the shrinkage asymptotic distribution of Bai
(1997). However, this is unsatisfactory for two reasons. First, as we show below [see also Casini and
Perron (2020b; 2021b)], the shrinkage asymptotic distribution provides a poor approximation to
the finite-sample distribution of the least-squares estimator. Second, the latter point also explains
the poor coverage properties of the confidence intervals derived from the shrinkage asymptotic
distribution when the magnitude of the break is not large. Some related results were obtained
with Jiang et al. (2018) for a simple location model. Their approach is, however, quite restrictive
and no feasible inference procedure suggested. See the supplement for a more complete discussion.

We begin with the following assumption which specifies that i) we use a shrinking condition
on 0%; ii) we introduce a locally increasing variance condition on the residual process. The first
is similarly used under classical large-IN asymptotics, while the second is new and useful in our
context in order to accurately capture the relevant uncertainty in the change-point problem. We
do not impose restrictions only on §% but also on the ratio §%/0; when ¢ is close to TP. We
refer to §%/0; as the signal-to-noise ratio. Controlling this ratio rather than just 6% allows for an
alternative characterization of the uncertainty about the change-point date in order to obtain an
asymptotic distribution which provides a better approximation of the finite-sample distribution of

the estimator. To emphasize that 6% depends on the sample-size we denote it by dy,.

Assumption 4.1. Let 6, = 0°h'/*, 6° € R? and assume that for allt € (N — ¢, N? +¢), with € | 0
and T' "¢ - B < 00, 0 < k < 1/2, E[(Ahef)Q | Fin) = U,Ql’t_hAt P-a.s., where oy,; = 040,

o, 2h Y and 0 < 7 < .

Note that the localization parameter 0% in the definition of §, is different from the fixed
parameter 6% since h — 0. The rate 1/4 in the conditions §;, = O(h'/*) and o}, = O(h™'/%)
is for tractability. One can show that consistency also holds for a rate faster than 1/4, though
slower than k. However, for the derivation of the limiting distribution one needs d, /o) = O(h'/?)
and O(6;,) = O(o; ') with x < 1/2. The increasing local volatility condition in Assumption 4.1 is
similar to that used by Christensen, Oomen and Reno (2022). They named it volatility burst [cf.



eq. (7)] and they used it along with a drift bust condition to model the existence of short-lived
locally explosive trends in stock prices (i.e., flash crashes). Although that is a different context
from ours, it is the deviation from the standard diffusion setting that allows the authors to account
for flash crashes and that allows us to provide a more accurate asymptotic theory for change-point
estimation.

The vector of scaled true parameters is 6, = ((8°)’, 8;)". Under Assumption 4.1 the error

process has the following representation.

. t . . . ,
Assumption 4.2. ef = fo Oc,s. AAWe s where W, is a one-dimensional standard Wiener process,

Oe,s S%(Nl?_ev Nl())—i_e)
Oe,s,A = .
gh™ 0, se€ (N)—¢€ NP +e)

with 0 < 02, < co. Furthermore, (e, D), = (e, Z), = 0 identically for all t > 0.

Define

Aper, te¢ (N) —e N +e¢
AL # N o +e) (4.1)
RYAARer, t € (NP —e, NP +¢)

We shall refer to {Ané;, -%;} as the normalized residual process. Under this framework, the rate
of convergence of N, is now 7% with 0 < x < 1 /2. Due to the fast rate of convergence of the
change-point estimator, the objective function oscillates too rapidly as h | 0. By scaling up the
volatility of the errors around the change-point, we make the objective function behave as if it were
a function of a standard diffusion process. The neighborhood in which the errors have relatively
higher variance is shrinking at rate 1/7" 7", the rate of convergence of N. Hence, in a neighborhood
of NY in which we study the limiting behavior of the break point estimator, the rescaled criterion
function is regular enough so that a feasible limit theory can be developed. The rate of convergence
T'—% is still sufficiently fast to guarantee a v/T-consistent estimation of the slope parameters, as
stated in the following proposition. Let (Za, Za) (v) be the predictable quadratic variation process
of Zx. The process # (v) is, conditionally on %, a two-sided centered Gaussian martingale with

independent increments and variances given in Section S.B of the supplement.

Proposition 4.1. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and 4.1-4.2, (i) N o Xo; (i) for every
e > 0 there exists a K > 0 such that for all large T, P(T""" X\, — )\0’ > K[|6°]725%) < €; and
(iii) for k € (0, 1/4], (\/T/N(B = B°), \JT/N(S — 64)) % N (0, V) as T — oo, with V given

i Proposition 3.5.

We first present a general result which shows that under Assumption 4.1 one can obtain a

shrinkage asymptotic distribution similar to Bai (1997). The latter exploits the consistency of
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X, and the fact that mixing conditions implies that the regimes before and after )y are asymp-
A

totically independent. Let Zn = (0,..., 0, 2z,+1)h, - - - 5 2rop, 0, .. 0) if T, < TP and Zn =

(O,...,O, Z(Tbo—i—l)h""’szh’ O,,O) lfTb>Tl9

Proposition 4.2. Under Assumption 2.1, 2.5-2.4, 3.1-3.2 and /.1-4.2,

T (N — Ao) S° argmax 2(8°)# (v). (4.2)
vE(—00,00)
The distribution in Proposition 4.2 is different from Bai (1997). One can show that his

distribution can be obtained under a continuous record if Assumption 4.1 is modified as follows:
§p = 6°h2 T' "¢ = B < 00, 0 < k < 1/2 and o), £ h~"/2. This would result in,

T (N =) S (4.3)
argmax {— (50)/ (Zn, ZA) (v)0° + 2 (6())/7/ (v)} :

vE(—00, 00)

The difference between (4.2) and (4.3) is the presence of the drift (or deterministic) part (6°)
(Zn, Za) (v) 8°. Without relating the magnitude of the break to the local variance condition, the
order of the stochastic part dominates that of the deterministic part and so the latter vanishes
asymptotically. The distributions in (4.2)-(4.3) share the same issues as Bai’s and so they do not
add any particular insight. We therefore move to discuss how to obtain a more useful continuous
record asymptotic distribution.

Consider the set D (C) = {N,: N, € {N? + Ch'=*}  |C| < 0o}, on the original time scale.
Let ¢, = h'™*. Here we use the same device as in Foster and Nelson (1994; 1996). Different
scaling factors applied to an objective function can lead to different asymptotic distributions. We
normalize Q7(T}) by 1, where 1, corresponds to the rate of convergence in Proposition 4.1. The

rate of convergence implicitly describes the order of the terms in the expansion of Q7 (T,) —Qr (7).

Lemma 4.1. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and /.1-4.2,

(Qr (Ty) = Qr (T3))/vn (4.4)
= —0} (ZhZa/tn) O + 20} (Zie/tn) sen (TY = Ty) + o, (h'7?) .

For brevity, we use the notation + in place of sgn (T — T;), henceforth. The conditional first
moment of the centered criterion function Q7 (T,) — Q7 (TY) is of order O (h!'™F), i.e., it “oscillates”
rapidly as h | 0. Hence, in order to approximate the behavior of {f » — TP}, we proceed as in
Section 3 in Nelson and Foster (1994) and rescale “time”. For any C > 0, let Lo £ N? — Ch'™*
and Re = N + Ch'™*, where Lo and Rg are the left and right boundary points of D (C),
respectively. We then have |Rc — Lco| = O (Ch'™"). Now, take the vanishingly small interval

11



[Lc, Re) on the original time scale, and stretch it into a time interval [T* "L, T'""R¢] on a
new “fast time scale”. Changing time scale simply means that we rescale the objective function in
such a way that it is of higher order as h | 0, i.e., it fluctuates less. This leads to an asymptotic
distribution that accounts for higher uncertainty. Yet, under our framework it is still possible to
consistently estimate the break fraction and the regression coefficients so that inference is feasible.

Since the criterion function is scaled by 1; !, all scaled processes are O, (1). Now, let N, (v) =

NP —vh!=" v € [-C, C]. Using Lemma 4.1 and Assumption 4.1 (see the appendix),

Ui (Qr (1 () = Qr () =

T, / 0 ~
/ “kh  Zkh 0)’ Zkh  Ckh 1/2
-0 op+2(0 E + o0, (h )
" (k—Tb(v)—i-l \ ¢h V wh) " ( ) k=Tp(v)+1 V wh V wh P ( )

where €, = h'/%ey,. In addition, in view of (2.3), we let dZ,, = w;l/Qaz,deZﬁ for s €
[NY — vh'=* NP + vh'~%]. Applying the time scale change s — t = 1, 's to all processes including
Y0 we have dZy; = 07,dWy, with t € T (C), where T (C) £ {t: t € {Nf +v ||50||2/52] s o] <
C'}. Therefore,

Uit (Qr (T (v) - Qr (7))

0 , 0
= —(5;1 ( Z Zw,kh'z:/},kh> 5h +2 ((50) Z Zw,khgdz,kh + Op <h1/2> s
k:Tb(v)—i-l k:Tb('L))—‘rl

with NTj, (v) /T = Ny (v) = N + v, where 2y 11 = 2kn/ /P and €y g = Exn//Pn. Because of the
change of time scale, all processes in the last display are scaled up to be O, (1) and thus behave
as diffusion-like processes. On this new “fast time scale”, we have T*""Rc — T "Ls = O (1) and
Qr (Ty (v)) — Q7 (TY) is restored to be O, (1). Observe that changing the time scale does not
affect any statistic which depends on observations from k =1 to k = | Lo /h] or from k = |R¢/h]|
to k = T (since these involve a positive fraction of data). However, it does affect quantities
which include observations that fall in [T,h, TPh] (assuming T, < TP). In particular, on the
original time scale, the processes {D;}, {Z;} and {e;} are well-defined and scaled to be O, (1) while
Qr (Ty) — Qr (TP) (asymptotically) oscillates more rapidly than a simple diffusion-type process.
On the new “fast time scale”, {D;}, {Z;} and {e;} are not affected since they have the same
order in [T**Lc, T'"*Re] as h | 0. That is, the first conditional moments are O (h) while the
corresponding moments for Q7 (T,) —Qr (1Y) on T (C) are restored to be O (h). As the continuous-
time limit is approached, the rescaled criterion function (Qr (Ty (v)) — Qr (TY)) /h/? operates on
a “fast time scale” on T (C).

Our analysis is local; we examine the limiting behavior of the centered and rescaled criterion

function process in a neighborhood 7 (C) of the the true break date N defined on a new time
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scale. We first obtain the weak convergence results for the statistic (Qr (Ty (v)) — Q7 (TP)) /h*/?
and then apply a continuous mapping theorem for the argmax functional. However, it is convenient

to work with a re-parametrized objective function. Proposition 4.1 allows us to use

Qr (0%) = (Qr (0, T (v)) = Qr (0°, T) ) /1,

where 0* £ (0}, v)" with Ty (v) = TP + |v/h] and T (v) is the time index on the “fast time
scale”. The normalizing factor 1,h'/? allows us to change the time scale and obtain an alternative
asymptotic distribution. When v varies, T}, (v) potentially visits all integers between 1 and T.
Thus, on the new time scale, we need to introduce the trimming parameter 7 € (0, 1) which
determines the region where T, (v) can vary. We have the normalizations Ty, (v) = Tmif T}, (v) < T'w
and Ty (v) = T(1—m) if T, (v) > T(1—7). On the old time scale, N, (u) = N + u with
v — 9}, Mu, so that N (u) is in a vanishing neighborhood of N?. On T (C), we index the process
Qr (0, T, (v)) — Q7 (0°, TY) by two time subscripts: one referring to the time 7, on the original
time scale and one referring to the time elapsed since Tyh on the “fast time scale”. For simplicity,
we omit the former; since the limiting distribution of the least-squares estimator will now depend
on the trimming we use the notation YA}M = T/A\b,7T where Xbm is the least-squares estimator of the
fractional break date associated to the fast time scale (i.e., associated to the factor 1, h'/?).

The optimization problem is not affected by the change of time scale. In fact, by Proposition
4.1, u = Th(\ — \o) = KO, (h'=") on the old time scale; whereas on the new “fast time scale”,
v = Th(Ar — M) = O, (1). The maximization problem is not changed because v/h can take any
value in R. The process Q7 (0n, Ty (v)) — Qr (0°, TY) is thus analyzed on a fixed horizon since v
now varies over [(N7 — N2)/(]|6°||7252), (N (1 — 7) — N2)/(||6°|| *2)]. Define the modification
to the set D (C) applicable to the new time scale by

D (€)= { (3% 1) [¢P] < € T o) = 7 4 o8 o] o

(N7 — NY)

9 __ =
18°] " &

IN

N(l—w)—Nl?}

-2 __
181~ 7

Let D (D* (C), R) denote the space of all cadlag functions from D* (C') into R. Endow this space
with the Skorokhod topology. Under a continuous record, we can apply limit theorems for statistics
involving (co)variation between regressors and errors. This enables us to deduce the limiting
process for Q (6%), relying upon the work of Jacod (1994; 1997) and Jacod and Protter (1998).
To guide intuition, note that under the new re-parametrization, the limit law of Q (6*) is,

according to Lemma 4.1, the same as the limit law of

—h7Y28, (ZNZA) 6 + 2071268, (Z)ke)
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4

—(8°) (Z0Za) 8 % 207 Y2 (8°) nMA (Zph~1E) |

where £ denotes (first order) equivalence in law, and since (approximately) eg, ~ i.n.d. 4 (0,
O p_1h); Ong = Onoey then &, ~ in.d. AN ((), aik_lh). Hence, the limit law of Q1 (6*) is, to

first-order, equivalent to the law of
—(8°) (ZaZa) 8 £ 2 (%) (h7V2Z4e). (4.5)

We apply a law of large numbers to the first term and a stable convergence in law under the
Skorokhod topology to the second. Assumption 4.1 combined with the normalizing factor h='/2 in
Qr (6%) account for the discrepancy between the deterministic and stochastic component in (4.5).

Having outlined the main steps in the arguments used to derive the continuous records limit
distribution of the break date estimate, we now state the main result of this section. The limiting
process is realized on a extension of the original probability space and we relegate this description

to Section S.B in the supplement.

Theorem 4.1. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and /.1-4.2,

N (Rorr = o) 5 argmax { = (8°)' (Zs, Z8) (0)8°+2 () # (v)}, (4.6)
veEA
where
A2 [NW—NE N(l—ﬂ)—N,?]
leef~ e fleo) o

Note the differences between the results in Theorem 4.1 and in Proposition 4.2. First, on the
fast time scale, Xbﬂr behaves as an inconsistent estimator for Ay for N fixed, but it is consistent as
N — o0o. On the original time scale X, is not only consistent for Ay but it also enjoys a similar
asymptotic distribution as in Bai (1997). Second, the asymptotic distribution of S\M depends on
the span of the data and consequently on the trimming 7. Proposition 4.2, in contrast, suggests
that the span, the trimming and the location of the break are irrelevant for the limiting behavior
of the estimator. This intuitively follows from the fact that under the original time scale the break
date estimator is consistent. We will show that indeed the span of the data and the location of
the break influence the finite-sample properties of the least-squares estimator, and that Theorem
4.1 provides a more useful approximation. An important implication of Theorem 4.1 is that the
precision of the estimator depends more on the span N than to the number of observations T'.

Unlike Bai’s distribution, the distribution in Theorem 4.1 involves the location of the maxi-
mum of a function of the (quadratic) variation of the regressors and of a two-sided centered Gaus-
sian martingale process over the interval [(N7 — N2)/(||6°]| 7> 72), (N (1 — 7) — N2)/(||6°]|~2%52)].
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Notably, this domain depends on the true value of N and therefore the limit distribution is asym-
metric, in general. The degree of asymmetry increases as the true break point moves away from
mid-sample. This holds even when the distributions of the errors and regressors are the same
in the pre- and post-break regimes. The presence of the trimming confirms that the span of the
(trimmed) data affects the limit distribution. It is well-known that the least-squares estimator of
the break date can be sensitive to trimming [see Bai and Perron (2003) for some recommendations
on the trimming choice|. Our asymptotic theory accommodates this property of the least-squares
estimator while others do not.

Additional relevant remarks follow; more details are provided in the supplement. The magni-
tude of the break plays a key role in determining the density of the asymptotic distribution. More
precisely, the density displays interesting properties which change when the signal-to-noise ratio as
well as other parameters of the model change. Moreover, the distribution in Theorem 4.1 is able
to reproduce important features of the small-sample results obtained via simulations [e.g., Bai and
Perron (2006)]. First, the second moments of the regressors impact the asymptotic mean as well
as the second-order behavior of the break point estimator (e.g., the persistence of the regressors
influences the finite-sample performance of the estimator). Second, the continuous record setting
manages to preserve information about the time span N of the data, a clear advantage since the
location of the true break point matters for the small-sample distribution of the estimator. It has
been shown via simulations that in small-samples the break point estimator tends to be imprecise
if the break size is small, and some bias arises if the break point is not at mid-sample. In our
framework, the (trimmed) time horizon [Nm, N (1 — )] is fixed and thus we can distinguish be-
tween the statistical content of the segments [N7, N] and [N?, N (1 — 7)]. In contrast, this is not
feasible under the classical shrinkage large- N asymptotics because both the pre- and post-break
segments increase proportionately and mixing conditions are imposed so that the only relevant
information is a neighborhood around the true break date. Details on how to simulate the limiting
distribution in Theorem 4.1 are given in Section S.A of the supplement.

We further characterize the asymptotic distribution by exploiting the (.#-conditionally) Gaus-
sian property of the limit process. The analysis also holds unconditionally if we assume that the
volatility processes are non-stochastic. Thus, as in the classical setting, we begin with a second-
order stationarity assumption within each regime. The following assumption guarantees that the

results below remain valid without the need to condition on .%.

Assumption 4.3. The process X° is (possibly time-varying) deterministic; {2, exn} is second-order
stationary within each regime. For k =1,..., Ty, E(zinzpy| Fe—1yn) = Lz1h, E(€2,| Fu-1n) =
02 h and Bz 24,00 Fr—vyn) = Qp 1 h* while for k =T)+1,..., T, B(zknziy| F-1)n) = Lz2h,

E(€inl Fw-1n) = 022h and E(zun2,&8n F—yn) = Qo 2h?.
Let W, i =1, 2, be two independent standard Wiener processes defined on [0, c0), starting
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at the origin when s = 0. Let

—%%—Wf‘(s), if s <0

Y (s) = (6°)'22,28° || X (W)UQWQ* (s), ifs>0.

(0922180 2 (89)Qy 1(8°)
Theorem 4.2. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and /.1-4.3,

2
(8°) (2, Z),8° N
( 00, 1150 ) N ()\b,ﬂ — )\0) = ar;gerzlgx“l/ (s), (4.7)

where

A | NT— N? ((50), (Z, Z>160)2 N1-m)—N ((50)/ (Z, Z>150>2

A* = 7 ) — 7
169722 (69) Q1 (69) |60 % &2 (69) 0y 100

Unlike the asymptotic distribution derived under classical large-N asymptotics, the probabil-
ity density in (4.7) is not available in closed form. Furthermore, the limiting distribution depends
on unknown quantities. In the next section we explain how one can derive a feasible counterpart.
This will be useful to characterize the main features of interest that will guide us in devising

methods to construct confidence sets for 7).

5 Feasible Approximations to the Finite-Sample Distributions

In Section 5.1 we propose a feasible version of our limit theory and compare it with the finite-
sample distribution. In Section 5.2 we discuss some differences between our approach and others.
Let

(02, 2),8°)

)= (08°)'(2, Z),°
((8°) Q2 10°)

(0°)' (2, Z), 0"

(6°) Qy 50°
(69) Q100

) 51:

o =

5.1 A Feasible Version of the Limit Distribution

In order to use the continuous record asymptotic distribution in practice one needs consistent
estimates of the unknown quantities. In this section, we compare the finite-sample distribution of
the least-squares estimator of the change-point date with a feasible version of the continuous record

asymptotic distribution obtained with plug-in estimates. We obtain the finite-sample distribution
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of p(f br — Tp)) based on 100,000 simulations from the following model:
Y =D+ Z8° + 225%1{t>T£} ‘e, t=1,...,T, (5.1)

where Z; = 0.5Z;_1 + u; with uy ~ i.i.d. .4 (0, 1) independent of e¢; ~ i.i.d. A (0, 62), 02 = 1,
W=1,2y=0,D;=1forall t, and T = 100. We set 7 = 0.05, T = |T'\o] with \g = 0.3, 0.5, 0.7
and consider different break sizes 8% = 0.2, 0.3, 0.5, 1. The infeasible continuous record asymptotic
distribution is computed assuming knowledge of the data generating process (DGP) as well as of
the model parameters, i.e., using Theorem 4.2 where we set N equal to its true value, ||6°|| 7262 =

1671120

that the scaling h*/2 and h~'/* in the definition of 6), and o}, respectively, cancel using the fact that

o2, and &, & and p equal to their true values, respectively, with ¢% in place of 6°. Note
they appear in both numerator and denominator and applying a change in variables. The feasible
counterparts are constructed with plug-in estimates of &, &, p and (N?||6°]* /o2)p. In practice
we need to use a normalization for N. A common choice is N = 1. Then /\b T,/T is a natural
estimate of \g, using the consistency result of )\b that holds in the setting of Theorem 4.1 which
can also be rationalized for large N under the conditions of Theorem 4.1. In practice this means
that we approximate the distribution of the estimator /A\b,7T where 7 is chosen by the researcher
and we plug-in the estimator X, which can be based on any trimming because of the consistency
property. Here, we set N equal to the least-squares estimator based on a trimming 0.15, which is

also used for the other plug-in estimates. The estimates of & and & are given, respectively, by

~ ~\ —1 ~ ~ ~\ —1 ~
! T / l T =2 /
0 (T=1T,) Iz, 2mknd Y (T-T,) Sl @hmniad

3 =1 =1
51 — — — s 52 = — — s
5 (T ' L8 s (T L&T, o i
( b) 2kt Zkh ( b) 2 k1 ChnZkhZn

where 0 is the least-squares estimator of 0, and €y, are the least-squares residuals. Note that in
51 and 52, the estimate o appears in both numerator and denominator so that the scaling h*/?
in the definition of §;, cancels. Use is made of the fact that <Z Z), is consistently estimated
by Zk 1 Zkhzkh//\b while €2 ; is consistently estimated by Tzk 1 ekhzkhzkh/)\b The method to
estimate Ao ||50|| o 2p is less immediate because it involves manipulating the scaling of each of the

three estimates. Let ¢ = H(50H2 o 2p. We use the following estimates for ¥ and p, respectively,

-1 o (T 712%: f g>2
Pl (k) oo () K1)
o' (Tb) >kl é\%hzkhzllfh(s

Whereas we have EZ LT (1 =1, 2), the corresponding approximations for p and U are given by

p/h" 2 p and 3/ h?* 2 9. However, before letting T — oo we can apply a change in variable
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using the fact that A, — A) = O (h*~*) which result in the extra factor h2* canceling.

Proposition 5.1. Under the conditions of Theorem /.2, (4.7) holds when using 51, 52, p and U in
place of &1, &, p and 9, respectively.

The proposition implies that the limiting distribution can be simulated using plug-in estimates.
This allows feasible inference about the break date. The results are presented in Figure 1-4 which
also plot the asymptotic distribution from Bai (1997) and the infeasible distribution from Theorem
4.2. Here by signal-to-noise ratio we mean 6% /0. which, given o = 1, equals the break size §%.

Several interesting observations appear at the outset. The density of the large-N shrinkage
asymptotic distribution does not depend on the location of the break, and thus it is always unimodal
and symmetric about the origin. None of these features are shared by the density derived under
a continuous record. When the true break is at mid-sample (Ao = 0.5), the density function is
symmetric and centered at zero. However, when the signal-to-noise ratio is low, the density features
three modes. This tri-modality vanishes as the signal-to-noise ratio increases. When 4% is low and
the break is not at mid-sample the density is asymmetric; for values of A\ less (larger) than 0.5,
the density is right (left) skewed. When the signal is low and Ag is less (larger) than 0.5, the
density has highest mode at some value near Y being close to the starting (end) sample point than
centered at A\g. However, as in the case of A\g = 0.5, when the signal-to-noise ratio increases the
highest mode is centered at a value which corresponds to Ao being close to \g. Asymmetry and
multi-modality of the finite-sample distribution of the break point estimator were also found by
Perron and Zhu (2005) and Deng and Perron (2006) in models with a trend.

The interpretation of these features are straightforward. For example, asymmetry reflects the
fact that the span of the data and the actual location of the break play a crucial role on the behavior
of the estimator. If the break occurs early in the sample there is a tendency to overestimate the
break date and vice-versa if the break occurs late in the sample. The marked changes in the shape
of the density as we raise 6% confirms that the magnitude of the shift matters a great deal as well.
The tri-modality of the density when the shift size is small reflects the uncertainty in the data as
to whether a structural change is present at all; i.e., the least-squares estimator finds it easier to
locate the break at either the beginning or the end of the sample. Unlike the large-N shrinkage
asymptotic distribution, the density of the feasible version of the continuous record distribution
provides a remarkably good approximation to the infeasible one and thus also to the finite-sample
distribution. The extended working paper Casini and Perron (2020a) shows that the quality of the

approximation is good for a variety of models.

5.2 Comparison with Other Approaches

The figures reported above have shown that there is a high degree of uncertainty when the break

magnitude is not large. The classical shrinkage asymptotics of Bai (1997) with 1 required to
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convergence to zero at a rate slower than O(7~'/?) clearly underestimates that degree of uncertainty
and, as the figures show, provides a poor approximation to the finite-sample behavior of the least-
squares estimator. In Section 7 we show that this issue is responsible for the poor coverage
probabilities of the confidence intervals introduced in Bai (1997) when the break magnitude is
small. On the other hand, Elliott and Miiller (2007) and Elliott et al. (2015) require dr to go to
zero at the fast rate O(T~'/2) leading to weak identification. The latter implies that the relevant
quantities in the model become inconsistent. This can be problematic for inference and indeed,
their inference often suffers from the opposite problem in that confidence intervals for T}, can be
too large [Casini and Perron (2019; 2021b) and Chang and Perron (2018)].

We impose conditions on the signal-to-noise ratio d /o rather than just on §. Consider a simple
location model with a change 0 in the mean and independent errors. What describes the uncertainty
about the break in this model is the ratio /0 where o is the volatility of the errors. We let 6 go
to zero at a not too fast rate while letting o increase to infinity in a neighborhood of Ty. That is
(67/0:) — 0 at rate O(T~/2) in a neighborhood of T}. Interestingly, this is the same rate Elliott
and Miiller used for é7 — 0. Away from T, we require (dr/c;) — 0 at slower rate—similar to
Yao (1987) and Bai (1997). The difference now is that we do not lose identification and all the
parameters in the model remain consistent. Under continuous-time, the variance of the processes is
proportional to the sampling interval. This allows us to trade-off the rate of convergence at which
Ao approaches )y with the variance of the errors in a neighborhood of TP by letting o; become
large when ¢ is close to T [i.e., a change of time scale as in Foster and Nelson (1994, 1996)]. This

offers a new characterization of higher uncertainty without losing identification.

6 Highest Density Region-based Confidence Sets

The features of the limit and finite-sample distributions suggest that standard methods to construct
confidence intervals may be inappropriate; e.g., two-sided intervals around the estimated break
date based on the standard deviations of the estimate. Our suggested approach is rather non-
standard and relates to Bayesian methods. In our context, the Highest Density Region (HDR)
seems the most appropriate in light of the asymmetry and, especially, the multi-modality of the
distribution for small break sizes. All that is needed to implement the procedure is an estimate of
the density function, using plug-in estimates as explained in Section 5. Choose some significance
level 0 < a < 1 and let ﬁTb denote the empirical counterpart of the probability distribution of
pN (S\bﬂr — \)) as defined in Theorem 4.2. Further, let py, denote the empirical density function
defined by the Radon-Nikodym equation p;, = dﬁTb /dAy, where A;, denotes the Lebesgue measure.

Definition 6.1. Highest Density Region: Assume that the density function fy (y) of some random

variable Y defined on a probability space (Qy, %y, Py ) and taking values on the measurable space
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(Y, %) is continuous and bounded. Then the (1 — ) 100% Highest Density Region is a subset
S(kq) of YV defined as S(ko) = {y : fv (y) > Ko} where k, the largest constant that satisfies
Py (Y € S(ka)) > 1 — au

The concept of HDR and of its estimation has an established literature in statistics. The
definition reported here is from Hyndman (1996); see also Samworth and Wand (2010) and Mason
and Polonik (2008; 2009) for more recent developments.

Definition 6.2. Confidence Sets for 7 under a Continuous Record: Under Assumption 2.1, 2.3-
2.4, 3.1-3.2 and 4.1-4.3, a (1 — a) 100% confidence set for Ty is a subset of {1,..., T'} given by
Cleve) = {Tye{l,....,T}: T, € S(cvy)}, where S(cvy) = {1} : pr, > cv,} and cv, satisfies
SUDcy, eR, ﬁTb (T, € S(cvy)) > 1—au

The confidence set C'(cv,,) has a frequentist interpretation even though the concept of HDR
is often encountered in Bayesian analyses since it associates naturally to the derived posterior
distribution, especially when the latter is multi-modal. A feature of the confidence set C'(cv,)
under our context is that, at least when the size of the shift is small, it consists of the union of
several disjoint intervals. The appeal of using HDR is that one can directly deal with such features.
As the break size increases and the distribution becomes unimodal, the HDR becomes equivalent

to the standard way of constructing confidence sets. In practice, one can proceed as follows.

Algorithm 1. Confidencesets for T):1) Estimate by least-squares the break point and the regres-
sion coefficients from model (2.4); 2) Replace quantities appearing in (4.7) by consistent estimators
as explained in Section 5; 3) Simulate the limiting distribution ﬁTb from Theorem 4.2; 4) Compute
the HDR of the empirical distribution ﬁ’Tb and include the point Ty, in the level 1 — a confidence set
C' (cvy) if Ty satisfies the conditions in Definition 6. 2.

This procedure will not deliver contiguous confidence sets when the size of the break is small.
Indeed, we find that in such cases, the overall confidence set for T consists in general of the union
of disjoint intervals if T}, is not near the tails of the sample. One is located around the estimate of
the break date, while the others are in the pre- and post-break regimes. To provide an illustration,
we consider a simple example involving a single draw from a simulation experiment. Figure 5
reports the HDR of the feasible limiting distribution of p(fb,7r — T?) for a random draw from the
model in (5.1) with parameters v° = 1, 8% = 0, unit variance and autoregressive coefficient 0.6 for
Z; and 0% = 1.2. We set \g = 0.35, 0.5 and 6% = 0.3, 0.8, 1.5. We use a trimming 0.15 for the
plug-in estimator T, and = = 0.05 for T, br- As explained in Section 5.1, we could use any other
trimming in place of 0.15. The results remain unchanged. We set T" = 100 and the significance
level is @ = 0.05. Note that the origin is at the estimated break date. The point on the horizontal

axis corresponds to the true break date. The black intervals on the horizontal axis correspond to
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regions of high density. The resulting confidence set is their union. Once a confidence region for
P(fb,w —Ty) is computed, it is straightforward to derive a 95% confidence set for 7). The top panel
(left plot) reports results for the case 6% = 0.3 and Ay = 0.35 and shows that the HDR is composed
of two disjoint intervals. The estimated break date is T, = 70 and the implied 95% confidence set
for TP is given by C'(cvoos) = {1,...,12}U{18,...100}. This includes 7} and the overall length is
95 observations. Table 1 reports for various methods whether 7Y is covered or not and the length
of the confidence sets for this example. The length of Bai’s (1997) confidence interval is 55 but
does not include 7. Elliott and Miiller’s (2007) confidence set, denoted by Ur.eq in Table 1, also
does not include the true break date at the 90% confidence level, but does so at the 95% and its

length is 95. Our method covers Ty and has a relatively shorter length across different §%.

7 Small-Sample Properties of the HDR Confidence Sets

We now assess via simulations the finite-sample performance of the method proposed to construct
confidence sets for the break date. We also make comparisons with alternative methods in the
literature: Bai’s (1997) approach based on the large- N shrinkage asymptotics; Elliott and Miiller’s
(2007), hereafter EM, method on inverting Nyblom’s (1989) statistic; the Inverted Likelihood
Ratio (ILR) approach of Eo and Morley (2015). We omit the technical details of these methods
and refer to the original sources or Chang and Perron (2018) for a review and comparisons. We
consider two DGPs: M1 is y, = 8° + 5%1{t>Tb0} + e, with 8% =1 and ¢; ~ i.i.d. A4 (0, 1); M2 is
Y = 0% (1 — 1Y) Leproy + Wy, + e with 12 = 0.8 and e; ~ i.5.d. 4 (0, 0.04). Our companion
paper Casini and Perron (2020a) includes extensive simulation results. We set the significance
level at @ = 0.05, and the break occurs at date |TAg|, where Ay = 0.2, 0.35, 0.5 and T" = 200
for M1 and 7' = 100 for M2. The results are presented in Table 2-3. The last row in each table
includes the rejection probability of a 5%-level sup-Wald test using the asymptotic critical value
in Andrews (1993), which provides a measure of the magnitude of the break relative to the noise.
For models with predictable processes we use the two-step procedure described in Section S.C.2.
Overall, the simulation results confirm previous findings about the performance of existing
methods. Bai’s (1997) method has a coverage rate below the nominal level when the size of the
break is small. Overall, our HDR method and that of EM show accurate empirical coverage rates
for all DGP considered. However, EM’s method almost always displays confidence sets which are
larger than those from the other approaches.! Over all DGPs considered, the average length of the
HDR confidence sets are 40% to 70% shorter than those obtained with EM’s approach when the
size of the shift is moderate to high. The results for M2, a change in mean with a lagged dependent

IThis problem is more severe when the errors are serially correlated or the model includes lagged dependent
variables (see also the supplement). Regarding the former, this in part may be due to issues with Newey and West
HAC-type estimators when there are breaks [see, e.g., Casini (2022) and Casini, Deng and Perron (2022)].

21



variable and strong correlation, are quite revealing. EM’s method yields confidence intervals that
are very wide, increasing with the size of the break and for large breaks covering nearly the entire
sample. This does not occur with the other methods. For instance, when Ay = 0.5 and 6% = 2, the
average length from the HDR method is 8.34 compared to 93.71 with EM’s. This concurs with the
results in Chang and Perron (2018).

In summary, the small-sample simulation results suggest that our continuous record HDR-
based inference provides accurate coverage probabilities close to the nominal level and average
lengths of the confidence sets shorter relative to existing methods. It is also valid and reliable
under a wider range of DGPs including long-memory processes. Specifically noteworthy is the fact

that it performs well for all break sizes, whether small or large.

8 Empirical Application

We apply the HDR method of constructing confidence sets about the break dates in monthly
U.S. industrial production growth. The data were obtained from the Federal Reserve Economic
Data website for the period 1990:01-2020:01. Annualized monthly growth rates are calculated as
1,200 x Ay, where Ay, is the first difference of the natural logarithms of the levels data. We

assume that the log industrial production follows a trend plus a potentially autocorrelated noise,
Ayt:6t+uta tzla"'aT?

where f3; has a finite number of breaks and {u,} is a zero-mean potentially serially correlated series
with a bounded spectral density at frequency zero. Figure 6 plots Ay,. The series resembles the
realization of a low-order autoregressive process with low persistence where the mean may change
over time. During the time period corresponding to the 2008-2009 financial crisis the series exhibits
a large drop of several standard deviations. Applying Bai and Perron’s (1998) testing procedure
with 15% trimming at the beginning and the end of the sample period and between break dates
except for the period 2008-2009 where a trimming of 2.5% is used, we find evidence of five breaks.
The estimates of the break dates and of the § in each regime are reported in Table 4. The results
from the testing procedure (not reported) suggest that all breaks are significant at 1% significant
level except the first break for which the statistical evidence is weaker. Indeed, the sup-F' test for
no break versus two breaks in the sub-sample [1990:01, 2008:05] (i.e., [1, T3] using the time index)
rejects the null at 1% significant level. In this sub-sample the least-squares method first detects
T, = 2000:04 and then T} = 1992:01. However, in the sub-sample [1990:01, 2000:04] (i.e., [1, T5])
the evidence for an additional break is weak. Thus, while the break date estimates YA’Q, fg, ﬂ, T
are associated to breaks of large magnitudes, the estimate of the first break date T; is associated
to a small break. The first and the fourth regimes (resp., [1990:01, 1992:01] and [2008:06, 2009:03])
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are short-lasting. Further, the first regime is close to the start of the sample. The first break
suggests a higher growth rate from 1992 to early 2000 relative to the period 1990-1992. This
period also corresponds to the well-known above-average growth in labor productivity in the late
1990s. The fourth regime lasts for ten months and corresponds to the 2008-2009 financial crisis.
To detect this regime a trimming of 2.5% is needed.

We now move to the confidence sets about the break dates. Even though our theoretical
results are established for a single break date, we can apply it to each individual estimated break
date.? We consider the HDR method, Bai’s (1997) and Elliott and Miiller’s (2007) method. We
do not consider the ILR method since it is based on a testing procedure that detects a different
number of breaks from the Bai and Perron’s (1998) procedure and so this affects the number of
confidence sets and their length making the comparison hard. For the Elliott and Miiller’s (2007)
method we report only the length of the confidence set.®> We begin with considering the confidence
set for the first break date. The length of Bai’s (1997) confidence set is shorter than that from
the HDR confidence set. However, the tests for an additional break in [1990:01, 2000:04] provides
weak evidence against the null of no break. In this case, a larger length of a confidence set should
provide a better representation of the uncertainty about the break. Thus, the short length of Bai’s
(1997) method raises concerns that this confidence interval may underestimate the uncertainty
about the break and following the simulation analysis of Section 7 it should leave us with concerns
about its finite-sample coverage properties. The HDR method yields a larger confidence set and
in addition we note that the start date of the confidence set corresponds to the start date of the
sample. This is consistent with the weak evidence about this break.

The HDR method results in shorter confidence sets than Bai’s (1997) for the remaining break
dates except for the fourth break where the two methods yields the same length. However, for the
latter case Bai’s (1997) confidence set constructed using 5% trimming does not include the break
date estimate obtained with 2.5% trimming (i.e., Tj = 2009:03) whereas the HDR confidence set
does. This feature suggests that the HDR confidence set is less sensitive to the trimming choice
and that it likely has better coverage properties. This is consistent with our theoretical results.
The HDR confidence set for the second break date is less than a half that from Bai’s. Elliott and
Miiller’s (2007) confidence set is in general much larger than those from the other methods. This
often holds even when the break magnitude is large. Thus, Elliott and Miiller’s (2007) confidence
sets are often less informative than the other confidence sets, consistent with the simulation results
discussed in Section 7. Overall, these results suggest that the improvement in inferences using the
HDR method can be substantial.

2The HDR method and the corresponding theoretical results carry over to the multiple break case as long as
the break fractions satisfy A} < ... < A2 with m > 1 a finite integer, so that the break points 17, ..., T\, are
asymptotically distinct. This assumption is ubiquitous in the literature.

3This method is based on test inversion and so one would need to report each date that enters the confidence
set but this takes too much space in our table. They are available upon request.
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9 Conclusions

We examined a change-point model under a continuous record asymptotics. With the time horizon
[0, N] fixed, we can account for the asymmetric informational content provided by the pre- and
post-break samples. We derived a feasible counterpart of the continuous record asymptotic distri-
bution of the change-point estimator using consistent plug-in estimates and showed that it provides
accurate approximations to the finite-sample distributions. We used our limit theory to construct
confidence sets for the change-point date based on the concept of Highest Density Region. Overall,
it delivers accurate coverage probabilities and relatively short average lengths of the confidence
sets. Importantly, it does so irrespective of the magnitude of the break, whether large or small, a

notoriously difficult problem in the literature.
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Figure 1: The probability density of P(fb,w _Tl?) for model (5.1) with break magnitude 69 = 0.2 and true break fraction A9 = 0.3, 0.5
and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is 60Z/ae = 5% since Ug = 1. The blue solid (green
broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 2: The probability density of p ﬁ, =—T9) for model (5.1) with break magnitude §% = 0.3 and true break fraction Ag = 0.3, 0.5
) b A

and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is (502/0e = 6% since 02 = 1. The blue solid (green

broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 3: The probability density of P(fb,w _Tl?) for model (5.1) with break magnitude 6OZ = 0.5 and true break fraction A\g = 0.3, 0.5
and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is 60Z/ae = 5% since Ug = 1. The blue solid (green
broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 4: The probability density of p(ﬁ,,7r —T7) for model (5.1) with break magnitude 6% = 1 and true break fraction Ao = 0.3, 0.5
and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is (502/0e = 6% since 02 = 1. The blue solid (green
broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 5: Highest Density Regions (HDRs) of the feasible probability density of p(ﬁ,’ﬂ. — TP) as described in Section 6. The
significance level is a = 0.05, the true break point is Ao = 0.3 and 0.5 (the left and right panels, respectively) and the break magnitude
is 6% = 0.3, 0.8 and 1.5 (the top, middle and bottom panels, respectively). The horizontal axis is the support of p (1/:1,7,r — Tl?)‘ The
red dot is the true value of the break point. The union of the black lines below the horizontal axis is the 95% HDR confidence region.
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U.S. Industrial Produciton Growth
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Figure 6: U.S. Industrial Production growth and estimates of the break dates. The sample period is 1990:01-2020:01.
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Table 1: Coverage rate and length of the confidence set for the example of Section 6
6% =03 5%, =08 8% =15
Cov. Lgth. Cov. Lgth. Cov. Lgth.

Ao = 0.35
HDR 1 94 1 27 1 10
Bai (1997) 0 55 0 13 1 8
Ur.neq 1 95 1 37 1 24

Xo=0.5
HDR 1 82 1 14 1 4
Bai (1997) 1 67 1 18 1 5
Ur.neq 1 95 1 35 1 14

Coverage rate and length of the confidence sets corresponding to the example from
Section 0. See also Figure 5. The significance level is @ = 0.05. Cov. and Lgth.
refer to the coverage rate and average size of the confidence sets (i.e. average
number of dates in the confidence sets), respectively. Cov=1 if the confidence set

includes TbO and Cov=0 otherwise. The sample size is T' = 100.
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Table 2: Small-sample coverage rate and length of the confidence set for model M1

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
Ao =0.5 HDR 0.938 131.35 0.941 69.05 0.943 24.02 0.962 6.89

Bai (1997) 0.842 114.24 0.855 51.58 0.911 19.75 0.964 5.70

ﬁT.eq 0.946 146.23 0.943 76.13 0948 33.45 0930 14.59

ILR 0.954 14725 0.956 78.17 0.965 23.87 0.973 5.25

Ao =0.35 HDR 0.939 129.02 0.934 63.70 0.939 24.23 0.951 5.78
Bai (1997) 0.855 111.45 0.855 49.52 0.914 19.39 0.956 5.62

ﬁT.eq 0.933 148.74 0.933 7594 0933 33.08 0.933 14.43

ILR 0.946 149.81 0.960 77.54 0.964 25.63 0.982 5.42

Ao =0.2 HDR 0.941 12729 0.940 62.13 0.942 22.06 0.946 5.73
Bai (1997) 0.863 110.12 0.911 53.14 0.931 20.20 0.967 5.67

ﬁT.eq 0.950 158.98 0.951 97.12 0.950 35.26 0.950 13.99

ILR 0.956 162.32 0.956 96.45 0.965 33.31 0.976  5.96
The model is y; = 8% + 5ozl{t>\_T>\0J} + et, ex ~ i.i.d. A4 (0,1), T = 200. Cov. and Lgth. refer to the coverage probability and the

average length of the confidence set (i.e., the average number of dates in the confidence set). sup-W refers to the rejection probability

of the sup-Wald test using a 5% size with the asymptotic critical value. The number of simulations is 5,000.

Table 3: Small-sample coverage rate and length of the confidence sets for model M2

0 _ 0 _ 0 _ 0 _
89 =1 89 =15 89 =2 89 =3
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
Ao =0.5 HDR 0916 30.68 0.944 14.77 0.969 8.34 0.995 4.55

Bai (1997) 0.793 12.87 0.877 7.11 0.929 4.78 0.973  2.957

ﬁT.eq 0951 91.64 0955 9394 0959 93.71 0.961 90.34

ILR 0.951 46.31 0967 34.19 0977 2648 0.991 16.49

Ao =0.35 HDR 0925 33.02 0933 16.67 0.971 9.40 0.994 4.33
Bai (1997) 0.804 13.00 0.876 7.11 0.923 4.94 0.974 2.93

ﬁT.eq 0.952 91.22 0.945 92.61 0.957 92.48 0.964 93.08

ILR 0.949 4754 0967 34.18 0982 2584 0984 16.76

Ao =0.2 HDR 0937 34.66 0953 19.24 0954 1142 0.994 5.36
Bai (1997) 0.832 13.64 0.885 7.19 0.931 4.92 0.971 291

ﬁT,eq 0.944 89.64 0951 89.58 0.956 88.22 0.961 85.95

ILR 0.946 49.13 0970 33.54 0.980 24.48 0.989 12.51

The model is y; = 6% (1 - 1/0) 15 Trao)) T VOys_1 +er, er ~i.i.d. A (0,0.04), 0 = 0.8, T = 100. The notes of Table 2 apply.
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Table 4: Break dates in monthly U.S. industrial production: 1990:01-2020:01

Regime Break date T}, 8 SD(p)
[1990:01, 1992:01] 1992:1 -0.08 2.24
[1992:02, 2000:04] 2000:04 4.97 0.46
[2000:05, 2008:05] 2008:05 0.82 0.60
[2008:06, 2009:03] 2009:03 -18.63  4.74
[2009:04, 2015:12] 2015:12 4.94 1.03
[2016:01, 2020:01] 2020:01 -0.33 0.76

Confidence set Lgth.
7
Bai (1997) [1990:10, 1992:12] 25
HDR [1990:01, 1992:10] 32
U'T.eq 55
7y
Bai (1997) [1998:09, 2001:06] 33
HDR [1999:11, 2001:2] 14
ﬁT.eq 48
3
Bai (1997) [2008:01, 2008:10] 9
HDR [2008:05, 2008:12] 7
ﬁT.eq 7
7y
Bai (1997) [2009:05, 2009:11]
HDR [2008:12, 2009:06] 6
ﬁT.eq 10
73
Bai (1997) [2013:03, 2016:03] 37
HDR [2013:12, 2016:03] 28
U'T.eq 47

Regime indicates the start and end date of the regime. Break date fb indicates the
least-squares estimate of the break date where b =1, 2, 3, 4, 5. E is the estimate

of B in a given regime. SD(,/B\) is the standard deviation of ,73’\
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A Supplemental Materials

The supplement for online publication [cf. Casini and Perron (2021c¢)] includes the followings: (i) it
describes how to simulate the continuous record limiting distribution; (ii) it describes the limiting
process in Theorem 4.1; (iii) it extends the benchmark model in Section 2 to include predictable
processes; (iv) it includes all proofs of the results in the paper; (v) it presents additional small-
sample evaluations of the HDR confidence sets.
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Abstract

This supplemental material is structured as follows. Section S.A describes how to simulate the
continuous record limiting distribution. Section S.B describes the limiting process in Theorem 4.1 of
the main text. Section S.C extends the benchmark model in Section 2 of the main text to include
predictable processes. Section S.D includes all proofs of the results in the paper. Section S.E presents

additional small-sample evaluations of the HDR confidence sets.



S.A Simulation of the Limiting Distribution in Theorem 4.1

We discuss how to simulate the limiting distribution in Theorem 4.1 which is slightly different from
simulating the limiting distribution in Theorem 4.2. However, the idea is similar in that we replace
unknown quantities by consistent estimates. First, we replace Ny by Nb T, »/T. The ratio HéOH /a 1s
consistently estimated by |d][2/(T* S5, €7,,) because under the “fast time scale” K237, &7, 5 &2
(cf. Assumption 4.1). Now consider the term {—(6%) (Za, Za) (v) 6° + 2(6°)'# (v)}. For v < 0, this can
be consistently estimated by

~/ T ~ o~
—TY/? [(5) (Z kbszﬂv/hj zkhzfﬁh) §— 28", (v)], (S.1)

where #}, is a simple—size dependent sequence of Gaussian processes whose marginal distribution is char-

acterized by h/2T Z? Ty+|v/h)

W, (v) has the same marginal distribution as # (v), and it follows that the limiting distribution from
Theorem 4.1 can be simulated. The proposed method is valid under a continuous-record asymptotic (i.e.,

ekhzkhz;h which is a consistent estimate of ff Qzesds. Thus, in the limit

under Assumption 4.1 and the adoption of the “fast time scale”). It can also be shown to be valid under
a fixed-shifts framework.

S.B Description of the Limiting Process in Theorem 4.1

We describe the probability setup underlying the limit process of Theorem 4.1. Note that Z) e/ hl/2 =

h—1/2 Ek Ty+1 Zkh€kh if T, < T0 Consider an additional measurable space (2*, .#*) and a transition
probablhty H (w, dw*) from (Q, %) into (2%, .#*). Next, we can define the products Q= Q x QF,
F = F QT P (dw, dw*) = P (dw) H (w, dw*). This defines an extension (2, Z, P) of the original
space (0, F, {Z:}1>0, P). We also consider another filtration {%}Qo which takes the following product
form F; = Mgy Fs @ F* where {Z}}t>0 is a filtration on (Q*, .#*). For the transition probability H,
we consider the simple form H (w, dw*) = P* (dw*) for some probability measure P* on (2*, .#*). This
constitutes a “very good” product filtered extension. Next, assume that (Q*, F*, (ZF})i>0, P*) supports
p-dimensional {.%}}-standard independent Wiener processes W (v) (i = 1, 2). Finally, we postulate the
process (7. ; with entries Zg’j )crg to admit a progressively measurable p x p matrix-valued process (i.e., a
symmetric “square-root” process) oz, satisfying Qz. = 0z.07%,, with the property that ||oz.||? < K||Qz]|
for some K < oo. Deﬁnetheprocess%( y=#1 (v)ifv<0,and # (v) = %( )ifv>0 where%( ) =
fﬁﬂ OZe desl* and #s (v) = Nyt 0Ze, <dW?2* with components 7/(3) -1 fNO o Ze SdVVs “(r) if

Ny
v <0and #W (v) =3P, Nytv )

Nz? O Ze. SdWS *)if y > 0. The process # (v) is well defined on the product

extension (Q, Z, , {ﬁt}po’ 15), and furthermore, conditionally on %, is a two-sided centered continuous

Gaussian process with independent increments and (conditional) covariance

Q7 (v), ifv<0

E (7 ® () 7D (1)) = 0D () —
E(F O O0) =957 ) = Q) (), ifv>0
wa (V)
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here Q049 (v) = [N 009 ds and Q) M0 ds. Therefore, # (v) is conditionall

where (2,1 (v) = le?JrU Ze.sds and €5 (v) = Zesds. erefore, # (v) is conditionally on
%, a continuous martingale with “deterministic” quadratlc covariation process {2y . The continuity of €2,
signifies that # (v) is not only conditionally Gaussian but also a.s. continuous. Precise treatment of this

result can be found in Section II.7 of Jacod and Shiryaev (2003).

S.C The Extended Model with Predictable Processes
S.C.1 The Extended Model

The assumptions on D; and Z; specify that they are continuous semimartingale of the form (2.3). This
precludes predictable processes, which are often of interest in applications; e.g., a constant and /or a lagged
dependent variable. Technically, these require a separate treatment since the coeflicients associated with
predictable processes are not identified under a fixed-span asymptotic setting. Let

Tk = H1ph + 1 Y (k—1)ns (k< [TXo]),
and
Tok = po,ph + o nY(—1)n, (k> [TXho] +1).

We consider the following extended model:

ALY, 2 {n,k + (AnDR) VO + (AnZt) 6% 1 + Apey, (k=1,...,T) ©.1)

Tok + (AnDp) V0 + (AnZk) 6% 5 + Anej, (k=T) +1,...,T)

for some given initial value Y. We specify the parameters associated with the constant and the lagged
dependent variable as being of higher order in h, or lower in 7', as h | 0 so that some fixed true parameter
V2 psn & pop — pap, arp = adh™l/2,
Qg p = a2h 1/2 and ash 5 agp — o p. Our framework is then similar to the small-diffusion setting
studied previously [cf. Ibragimov and Has'minskii (1980), Galtchouk and Konev (2001), Laredo (1990)
and Sgrensen and Uchida (2003)]. With ., and a., independent of h and fixed, respectively, at the true
values 1V and o2, the continuous-time model is then equivalent to

values can be identified, i.e., u1p 2 012, H2,h £ u3h~

t t
_ 0, ,0 0, .0
Yt - YE) + /0 (/‘Ll + M51{8>Nl9}) ds + /0 (al + a51{S>NbO}> Y;dS (82)
t /
DO+ /0 (091 + 0% Lo npy ) 47+ e,

fort € [0, N], where Y; = M A v, D, = S AL Dy, 2= S AL 2 and ef = SHM Ayer. The
results to be discussed below go through in this extended framework. However, some addltlonal technical
details are needed. Hence, we treat both cases with and without predictable components separately.
Note that the model and results can be trivially extended to allow for more general forms of predictable
processes (e.g., more lagged values), at the expense of additional technical details of no substance.
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S.C.2 Asymptotic Results for the Model with Predictable Processes

In this section, we present asymptotic results allowing for predictable processes that include a constant and

a lagged dependent variable among the regressors. Recall model (S.1). Let 89 = (u9, of, (19, (5%71)’)’,

8% = (g, o, (6%5-0%1)"), (8%, ((6%))) € ©o, and xpn = ((p1.n/u) b, (a1,1/)Y(e—1)nhs AnDy, AnZy).
In matrix format, the model is Y = X% + Z;0% + e, where now X is T x (p+¢q+2) and Zy = XR,

R £ [(I2, 02xp)", ( ’(erq)Xz, R)]', with R as defined in Section 2. Natural estimates of 3° and 6% minimize

the following criterion function,

T kh kh 2
h_l Z (Ahyk — 5,/ XSdS — (5// st8>
el (k—1)h (k—1)h

T kh
=r 1ty (Ahyk — uth— a?/ Yids — 7' Ay Dy, (8:3)
= (k—1)h

2
— (SIZ’lAthl {k < Tb} — 6’Z’2Ah2k1 {k‘ > Tb}> .

Hence, we define our LS estimator as the minimizer of the following approximation to (S.3):

T
Kty <Ahyk — phth = oY g_1yph — V' AR Dy,
k=1

2
— 07180 Zk 1 {k < Ty} — 079 A,Z1 {k > Tb}> .

Such approximations are common [cf. Christopeit (1986), Lai and Wei (1983) and Mel’nikov and Novikov
(1988) and the more recent work of Galtchouk and Konev (2001)]. Define ALY 2 BY2A,Y and ALV, =

hY2AL V(0 5%’1, 5%72), where

0y/ IRY . 0
(I/ ) Ay Dy, + (6Z,1 Ath—i—Ahek, ifk < Tb

ARV <V07 5%,17 5%,2) £ , )/ :
() AnDk + (0%) AnZi + Anef, il k> TP

The small-dispersion format of our model is then

ARY, = (N?h + O‘(l)f/(k—l)hh) 1 {k' < Tz?} (S.4)
+ (13 + a8V nynh) 1{k > T9} + A i (0°, 621, 0%2)

This re-parametrization emphasizes that asymptotically our model describes small disturbances to the

approximate dynamical system

dv? /dt = (1 + V) 1 {t < NP} + (8 + a8¥) 1 {2 > NP} (S.5)
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The process {ffto}po is the solution to the underlying ordinary differential equation. The LS estimate of

the break point is then defined as T, 2 arg maxr, Qr (1) , where
Qr (Ty) = Qr (B (Th), 0 (T), Tb) =0 (Z5M 25) 0,
and the LS estimates of the regression parameters are
5 a : AN 0 0 40
e_a’rg;ggéh(ST (57 67 Tb) ST (ﬂ 75Z7 Tb))a

where St is the sum of square residuals. With the exception of our small-dispersion assumption and
consequent more lengthy derivations, our analysis remains the same as in the model without predictable
processes. Hence, the asymptotic distribution of the break point estimator is derived under the same
setting as in Section 4. We show that the limiting distribution is qualitatively equivalent to that in
Theorem 4.1.

Assumption S.C.1. Assumption 2.4 and 3.2 hold. Assumption 2.1 and 3.1 now apply to the last p (resp.
q) elements of the process {Zi},~o (resp. {Dt}y>o)-

Proposition S.C.1. Consider model (S.1). Under Assumption 2.2 and S.C.1: (i) Ny B No; (ii) for every
e > 0 there exists a K > 0 such that for all large T, P(T|\y — Xo| > K||0°]|725?) < €.

Assumption S.C.2. Let 6y, = h'/*6° and for i =1, 2 pl = h'/*u? and of = h'/4a?, and assume that for
all t € (N — €, N +¢), with € | 0 and T'~"e — B < 00, 0 < k < 1/2, E[(Ane})? | Fi_p] = 0} , At P-a.s,

where oy, ¢ = Onoet With oy, 2 p1/45,

Furthermore, define the normalized residual Apé; as in (4.1). We shall derive a stable convergence
in distribution for Q (-, -) as defined in Section 4. The description of the limiting process is similar to
the one presented in the previous section. However, here we shall condition on the o-field 4 generated
by all latent processes appearing in the model. In view of its properties, the o-field .# admits a regular
version of the ¢-conditional probability, denoted H (w, dw*). The limit process is then realized on the
extension ((NZ, Z, {%}tzo, ]5) of the original filtered probability space as explained in Section S.B. We
again introduce a two-sided Gaussian process #z. (-) with a different dimension in order to accommodate
for the presence of the predictable regressors in the first two columns of both X and Z. That is, #7. (-) is
a p-dimensional process which is ¢¥-conditionally Gaussian and has P-a.s. continuous sample paths. We
then have the following theorem.

Theorem S.C.1. Consider model (S.4). Under Assumption 4.2, S.C.1-S.C.2: (i) Ny B No: (i) for every
e > 0 there exists a K > 0 such that for all large T, P(T'=%|\, — \o| > K||6°||725?) < ¢; (i)

N (Rpr = 20) 5 argmax {_ (6°) A ()80 +2 (5) (v)} , (S.6)
Nﬂ'*Ng 1\7(17”)7ngJ
[0 252" o0 %2

where A (v) is a process given by

A(v) £

ifv <
{A1 (v), fv<0 with

Ay (v), ifv>0’
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fN0+v ds fNO Yids O1xp
Ay (v) fNO ., Yads fNO Y2ds Oy |
Op><1 Op><1 <Zv Z)l (U)
and Ay (v) is defined analogously, where (Z, Z), (v) is the p x p predictable quadratic covariation process

of the pair (ZXL), Z(Aj)), 3<wu,j<pandv <0. The process # (v) is, conditionally on ¥, a two-sided
centered Gaussian martingale with independent increments.

When v < 0, the limit process # (v) is defined as follows,

fN% W j=1,
7 (v) = fNO VidWes, j=2,
VI W), G=h.pi2

where 7/2(6) =Dy fN0+v gerldW *(r) (¢ =1,..., p) and analogously when v > 0. That is, #Z. (v)

corresponds to the process # (v) used for the benchmark model (and so are W2*, W2* and Q. s below).
Its conditional covariance is given by

- » - Q) (v), ifv <0
E(@ )\ D (1)) = Q) () = 71 5 =0 S
(7 w9 ) = 00 Q%d) (v), ifv>0 (8.7)
where Q == fNO 278d5 if u _] = 1 Q = fNO }/520'375(18 if u ] — 2 Q(“J)( ) —
(u—2,j—-2)

fN§+stQ‘7§,sd57 iftl <w,j <2, u#j; Q(/Z:]l) (v) = 0, ifu=1,2,7=3,..., p; Q(;:JI) (v) = le?+v Zes

ds it 3 <wu,j < p+ 2; and similarly for Q(WUJQ) (v). The asymptotic distribution is qualitatively the same
as in Theorem 4.1. When the volatility processes are deterministic, we have convergence in law under the
Skorhokod topology to the same limit process # (-) with a Gaussian unconditional law. The case with
stationary regimes is described as follows.

Assumption S.C.3. ¥* = {p. 4, X.4, 0ct}>0 s deterministic and the regimes are stationary.

Let W}, i =1, 2, be two independent standard Wiener processes defined on [0, 0o0), starting at the
origin when s = 0. Let

—5 W (s), its<0
’7/(8): 59) Ao g0 s 59YQ 50 1/2 '
_(woz'ﬁ%l <m’) Wi (s), ifs>0.

Corollary S.C.1. Under Assumption 4.2, S.C.1-5.C.3,

((6%) A16°)

WN (AbJr — )\0) = argmax’ (s), (S.8)

seA;L

where

A =

2 2
Nm— N? ((50)'1\150) N(1—m)—N? ((60)'/\160)
160|232 (89) Qy 100 " |80 22 (89) Q100
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In the next two corollaries, we assume stationary errors across regimes. Corollary S.C.3 considers
the basic case of a change in the mean of a sequence of i.i.d. random variables. Let

—Ll Wi (s), if s <0
Vsta (5) = 50) A20° |5 50) Aps0\ /2 . :
_((60))’A1260|2|+<m> W3 (s), ifs>0

B Wi (s), ifs<0

7/sa3: '
,u,t() {_|;|+W2*<3>7 lfSZO

Corollary S.C.2. Under Assumption 4.2, S.C.1-S.C.3 and assuming that the second moments of the resid-
ual process are stationary across regimes, 0. s =0 for all0 < s < N,

0 A4 50 N
WN ()‘b,rr — )\0) = argmax ¥4 (5) ,

s€A2
where
Ay | V7= NP (89 A48 N (1 — ) — N? (8°) A16°
[ (I S o

Corollary S.C.3. Under Assumption 4.2, S.C.1-S.C.3, with v° = 0, 5%’1- =0, and o =0 fori=1, 2:

2 ~
(60/5) N ()\1),7r - )\0) = argmax Vsta () -
s€[(N7—NQ)(6°/7)%, (N(1-m)—N?)(6°/7)%]

Remark S.C.1. The last corollary reports the result for the simple case of a shift in the mean of an 7.7.d.
process. This case was recently considered by Jiang et al. (2018) under a continuous-time setting in their
Theorem 4.2-(b) which is similar to our Corollary S.C.3. Our limit theory differs in many respects, besides
being obviously more general. Jiang et al. (2018) only develop an infeasible distribution theory for the
break date estimator whereas we also derive a feasible version. This is because we introduce an assumption
about the drift in order to “keep” it in the asymptotics. The limiting distribution is also derived under a
different asymptotic experiment (cf. Assumption S.C.2 above and the change of time scale as discussed
in Section 4). A direct consequence is that the estimate of the break fraction is shown to be consistent as
h | 0 whereas Jiang et al. (2018) do not have such a result.

The results are similar to those in the benchmark model. However, the estimation of the regression
parameters is more complicated because of the identification issues about the parameters associated with
predictable processes. Nonetheless, our model specification allows us to construct feasible estimators.
Given the small-dispersion specification in (S.4), we propose a two-step estimator. In fact, (S.5) essentially
implies that asymptotically the evolution of the dependent variable is governed by a deterministic drift
function given by ud+a9v,? (vesp., ud+a9¥L) if t < NP (resp., t > N?). Thus, in a first step we construct
least-squares estimates of uY and o (i = 1, 2). Next, we subtract the estimate of the deterministic drift
from the dependent variable so as to generate a residual component that will be used (after rescaling)
as a new dependent variable in the second step where we construct the least-squares estimates of the
parameters associated with the stochastic semimartigale regressors.

Proposition S.C.2. Under Assumption 4.2, S.C.1-5.C.2, as h ] 0, S

The consistency of the estimate g is all that is needed to carry out our inference procedures about
the break point TI? presented in Section 6. The relevance of the result is that even though the drifts
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cannot in general be consistently estimated, we can, under our setting, estimate the parameters entering
the limiting distribution; i.e., u{ and af.

S.D Mathematical Proofs
S.D.1 Additional Notations

For a matrix A, the orthogonal projection matrices P4, M4 are defined as P4 = A (A’ A)_1 A and My =
I — Py, respectively. For a matrix A, we use the vector-induced norm, i.e., [|A| = sup, [|Az| /[|z]| .
Also, for a projection matrix P, ||PA|| < ||A]|. We denote the d-dimensional identity matrix by I;. When
the context is clear we omit the subscript notation in the projection matrices. We denote the (i, j)-th
element of the outer product matrix A’A as (A’ A)L ; and the ¢ x j upper-left (resp., lower-right) sub-
block of A'A as [A'A];, ;4 (vesp., [A’A]( ;. ;). For a random variable { and a number r > 1, we write
€11, = (E||€]|")"/". B and C are generic constants that may vary from line to line; we may sometime write
(', to emphasize the dependence of C on a number r. For two scalars a and b the symbol a A b means the
infimum of {a, b}. The symbol “15P gjomifies uniform locally in time convergence under the Skorokhod

topology and recall that it implies convergence in probability. The symbol “=” signifies equivalence in
distribution. We also use the same notations as detailed in Section 2.

S.D.2 Preliminary Lemmas
Lemma S.D.1 is Lemma A.1 in Bai (1997). Let X be defined as in the display equation after (S.11).

Lemma S.D.1. The following inequalities hold P-a.s.:

(Z3M Zo) — (ZyM Zs) (Z3M Z5) ™ (Z,M Zy) (S.1)
> R (XAXa) (X5X0) " (X, X0) R, Ty < TP
(Z3M Zo) — (ZyM Zs) (Z3M Z5) ™ (Z3M Zy) (S2)

> R (XAXA) (X'X — X5X) ™" (X'X — X)Xo) R, Tp > TP.

The following lemma presents the uniform approximation to the instantaneous covariation between
continuous semimartingales. This will be useful in the proof of the convergence rate of our estimator.
Below, the time window in which we study certain estimates is shrinking at a rate no faster than h'~¢ for
some 0 < e < 1/2.

Lemma S.D.2. Let X; (resp., Xt) be a q (resp., p)-dimensional It continuous semimartingale defined on
[0, N]. Let ¥ denote the time t instantaneous covariation between X; and )N(t. Choose a fized number
€ > 0 and w satisfying 1/2 — € > w > € > 0. Further, let By = |[N/h—T%|. Define the moving
average of Et as Lpp = (Twh) kh+T hZ}Sds, and let ikh =S (Twh)_1 ZZLZTJ AthHAhX',’CH.Then,
SUP| << B 1Skn — Senl| = op(1). Furthermore, for each k and some K > 0 with N — K > kh > K,
SUppecrw<ri-c || Skn — Seall = 0p (1)

Proof. By a polarization argument, we can assume that X; and X, are univariate without loss of generality,
and by standard localization arguments, we can assume that the drift and diffusion coefficients of X; and
X; are bounded. Then, by It6 Lemma,

|77 ] (k+i)h _
Sin — Sk 2 Twh /k h Xs - X(kJrifl)h) dXs
(k+i—
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1 LTZ“:'J (k+i)h ( o )
+ / Xy — Xiprin ) dXs.
T%h = Jkvi-1)h (k=)

For any | > 1, Hikh — Sl < K;T~%/2 which follows from standard estimates for continuous Itd
semimartignales. By a maximal inequality,

sup ’ik’h - ik’h’

< KV'T,
1<k<Brp -

which goes to zero choosing [ > 2/w. This proves the first claim. For the second, note that for > 1,

i\th - ikh‘

sup
Te STW ST175

sup
1<Tw—eLT1—2¢

< K, 7(0-29/ip~</2

Ykh — Ekh‘
!

and choose | > (2 — 4¢) /e to verify the claim. [

S.D.3 Preliminary Results

As it is customary in related contexts, we use a standard localization argument as explained in Section
1.d in Jacod and Shiryaev (2003) and thus we can replace Assumption 2.1-2.3 with the following stronger
assumption.

Assumption S.D.1. Let Assumption 2.1-2.3 hold. The process {Y:, Dy, Zt}tzo takes value in some compact
set, {01}~ 15 bounded cadlag and the process {j.+} is bounded cadlag or caglad.

The localization technique basically translates all the local conditions into global ones. We next
introduce concepts and results which will be useful in some of the proofs below.

S.D.3.1 Approximate Variation, LLNs and CLT's

We review some basic definitions about approximate covariation and more general high-frequency statis-
tics. Given a continuous-time semimartingales X = (X Z')1 <i<d € R? with zero initial value over the time
horizon [0, N], with P-a.s. continuous paths, the covariation of X over [0, ¢] is denoted [X, X],. The
(i, j)-element of the quadratic covariation process [X, X], is defined as’

T
i xi| = ohi iy i i
{X ; X L = ?Ll?o,;l (th X(k—l)h) (th X(k—l)h) )
where plim denotes the probability limit of the sum. [X, X], takes values in the cone of all positive
semidefinite symmetric d x d matrices and is continuous in ¢, adapted and of locally finite variation.
Associated with this, we can define the (i, j)-element of the approximate covariation matrix as

kz: (thih - hX(ik—l)h) (thzh - hX(jk:—l)h)’
>1

which consistently estimates the increments of the quadratic covariation [X ¢ |. It is an ex-post esti-
mator of the covariability between the components of X over the time interval [0, ¢t]. More precisely, as

4The reader may refer to Jacod and Protter (2012) or Jacod and Shiryaev (2003) for a complete introduction
to the material of this section.
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hl0:

lt/n) ‘ , , t
Z (Xlzch - X(qu)h) (lech - X(qu)h) _P>/O Eg&),sds,
k>1

where Zgg() ¢ is referred to as the spot (not integrated) volatility.

After this brief review, we turn to the statement of the asymptotic results for some statistics to be
encountered in the proofs below. We simply refer to Jacod and Protter (2012). More specifically, Lemma
S.D.3-S.D.4 follow from their Theorem 3.3.1-(b), while Lemma S.D.5 follows from their Theorem 5.4.2.

Lemma S.D.3. Under Assumption S.D.1, we have as h | 0, T — oo with N fized and for any 1 <1, j <p,
(i) |(Zhe)is| 5 0 where (Zhe), y = SF_g,41 #newns
(ii) |(Zje),
(iii) | (Z520); j — [ an S99 5| 5 0 where (Z325), ; = SF_qy 41 #0405

(i) (ZyZ0); ; — f(];bo—i-l) (ZZ)st _>' 0 where (Z5Z0); ; ZZ:TI?—H Zl(clzzlgzjh)

For the following estimates involving X, we have, for any 1 <r <p and1 <1 < q+p,
P !
(v) | (xe) ”\ 5 0 where (Xe),, = Yy o
(r) (1)

, 3] P
(vi) |(Z3X f(T +1)h (er),sdsl — 0 where (Z5X),; = Z;}F:Tbﬂ “kh Tkh

. N y/ P l
(vii) ’( 0 )r,l - f(Tg+1)h ZI(er),sds — 0 where (Z(/)X)rl = Zk: TO+1 Zlgzh)wgci)z
Further, for 1 <wu, d < q +p,

(viii) ‘ (X'X), fo XX ds‘ = 0 where (X'X), 4 = ST 1xkh)mg3

P / T (z) .
— 0 where (Zpe); 1 = 34— 7041 ZhHCHR

Lemma S.D.4. Under Assumption S.D.1, we have as h | 0, T — oo with N fized, |N£ - Nb| >~y >0 and
for any 1 <14, j <p,
(i) with (Z/AZA)i Zk Lo zk,zz,g]h), we have

TOh .
[ (ZAZa)i ;= St on Zst sl 50, if Ty <TP _
T , . ;
[(ZhZa),,; — T(boZH) 257 ds| 5o, if T, > 1)

and for 1 <r <p+q,
(i) with (ZAXA)“« = Zk TO+1 z,(c,zx,(ch), we have

TOh .
| (ZAXA)ir = St s szsds] 5o, ifT, <1
[(Z4Xa),, — T(bf;j“ =5 ds| B0, if T, > TP

Next, we turn to the central limit theorems, they all feature a limiting process defined on an exten-
sion of the original probability space (€2, %, P). In order to avoid non-useful repetitions, we present
a general framework valid for all statistics considered in the paper. The first step is to carry out
an extension of the original probability space (€2, .#, P). We accomplish this in the usual way. We
first fix the original probability space (2, .#, {Z%;}+>0, P). Consider an additional measurable space
(Q*, F*) and a tran81t1on probablhty Q (w, dw*) from (2, .#) into (2%, F*). Next, we can define the
products Q = Q x Q, = FQF" and P(dw dw*) = P (dw) Q (w, dw*). This defines the exten-
sion (@, ;5:, ]5) of the original space (2, #, {Z:}t>0, P). Any variable or process defined on either

Q or QF is extended in the usual to Q as follows: for example, let Y; be defined on €. Then we
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say that Y; is extended in the usual way to 1 by writing Y (w w*) = Yt( ). Further, we identify
F, with .F @ {0, Q*}, so that we have a filtered space (€2, .Z, {Fi}i>0, P). Finally, as for the filtra-

tion, we can consider another filtration {Jt}tz() taking the product form % = Ngs4 Fs @ F

%, where

{Z}i>0 is a filtration on (Q*, .#*). As for the transition probability () we can consider the simple form
@ (w, dw*) = P* (dw”) for some probability measure on (2", .#*). This defines the way a product filtered
extension (Q, .7, {ﬂt}po, P) of the original filtered space (Q, .Z, {Z;}1>0, P) is constructed in this
paper. Assume that the auxiliary probability space (%, Z*, {#}}i>0, P*) supports a p?-dimensional

standard Wiener process W] which is adapted to {%} We need some additional ingredients in or-
der to describe the limiting process. We choose a progressively measurable “square-root” process o7, of

the M1, ,-valued process ) Z.s, whose elements are given by Z(” k) Z(Zk)Z(Z]Q Due to the symme-

pixp
try of ¥z, the matrix with entries (JZ,(SZJ k)

S3H) | §3H)
Yge +2z%

+ szgl k) )/V/2 is a square root of the matrix with entries
. Then the process % with components %(T’j) 2-1/2 fo (” k) (JT kl))dWT(kl)

is, conditionally on .#, a continuous Gaussian process with independent 1ncrernents and (condltlonal) co-
variance E(% (9) (v) % %D (v) | F) (Egi)ﬁ( i | Z(TZ)E(Jk))ds where v < 0. The CLT of interest

is as follows.

= fTbO h+v

Lemma S.D.5. Let Z be a continuous Ité semimartingale satisfying Assumption S.D.1. Then, (Nh)71/2

(2525 — (12, Z)gy, = |2, Z) gy pr)) S5 % -

S.D.4 Proofs of the Results in Sections 3 and 4
S.D.4.1 Additional Notation

In some of the proofs we face a setting in which NV, is allowed to vary within a shrinking neighborhood
of Nl? . Some estimates only depend on observations in this window. For example, assume T < Té) and

consider ZZE Tyt1 TEpTy,- When Ny is allowed to vary within a shrinking neighborhood of Nl? , this sum
approximates a local window of asymptotically shrinking size. Introduce a sequence of integers {lr} that
satisfies I7 — oo and I7h — 0. Below we shall establish a 7' *-rate of convergence of Xb toward g,
considering the case where N, — N = T~U=%) for some # € (0, 1/2). Hence, define

Ty Ty
/
Z (Tb, Tb) Z .’L‘khﬂ?kh == Z TkhTEh, (83)
k=Ty+1 k=TQ+1—lp

where now Iy = |T%| — oo and Irh = h'™® — 0. Note that 1/h!™" is the rate of convergence and the
interpretation for Sx (Ty, TY) is that it involves asymptotically an infinite number of observations falling
in the shrinking (at rate h'=*) block ((T, — 1) h, TPh]. Other statistics involving the regressors and errors
are defined similarly:

0
Tb

b
Yxe (Tby Tz?) 2 N Tkwern= Y TknCrh (S.4)
k=Ty+1 k=TQP+1—lr
and
Ty
ZZe (Tb, Té)) é Z Zkh€kh- (85)
k=T +1—Ip
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— 0
Further, we let ¥ x, (Tb, Tlf)) 2 p=(1=r) f ]]\Z * Y xe,sds and analogously when Z replaces X. We also define

7y
Yhx (Tb7 Tz?) R D (S.6)
k=T0+1—Ip

The proofs of Section 4 are first given for the case where p.; from equation (2.3) are identically zero.
In the last step, this is relaxed. Furthermore, throughout the proofs we proceed conditionally on the
processes p.; and ¥? (defined in Assumption 2.3) so that they are treated as if they were deterministic.
This is a natural strategy since the processes p.; are of higher order in A and they do not play any role
for the asymptotic results [cf. Barndorff-Nielsen and Shephard (2004)].

S.D.4.2 Proof of Proposition 3.1

Proof. The concentrated sample objective function evaluated at T}, is Qp(T}) = 5A’Tb (ZLM Z5) 6ATb. We have
or, = (Z5M Zy) ™ (ZLMY) = (ZyM Zo) ™ (Z5M Zo) 6% + (Z5M Z5) " ZyMe,

and 5@9 = (ZLM Zo) M (ZHMY') = 6% + (Z)M Zo) ™" (Z,Me). Therefore,

Qr (Th) = Qr (V) = &, (26M Za) 1, — S (Z6M Zo) 519 (8.7)
- (502)/ {(Z()MZQ) (Z5M Z5) ™" (Z5M Zo) — Z(’)MZO} 8% (S.8)
+ ge (Tp) , (S.9)
where
/ _ /

g (Ty) = 2 (0%) (Z5M2s) (2M Z5) ™" ZyMe — 2 (8%) (Z5Me) (S.10)
+ &' MZy (Z4MZy) ™" ZoMe — €' M Zy (Z)M Zo) ™" Zj Me. (S.11)

Denote
A ! 0
XA =Xo—Xp= (0, s 0, TRy - LT0p O,...,) , for Ty, < Ty

/

Xa 2 —(Xy— Xo) = (0, s 0,2 (g0 ) TTyhy 0,...,) : for Tj, > T
Xa =0, for Ty = T7.

Observe that when T # T}, we have Xo = Xy + Xasign (70 — Tj). When the sign is immaterial, we
simply write Xo = Xg + Xa. Next, let Zn = XA R, and define

(09)"{(ZM Zo) — (ZM Z5) (25 M Z5) ™ (Z5M Zg) } 6%

T) £ S.12
r ( b) ‘Tb —_ T[9| ( )

We arbitrarily define 7 (T;) = (6%)" 6% when T, = T?. We write (S.7) as
Qr (1) = Qr (Ty) = = [T, — T}| r (1) + g. (), for all T, (S.13)
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By definition, T}, is an extremum estimator and thus satisfies Je (Tb) > ‘fb - Tl?‘ r(fb). Therefore,

P (‘Xb - AO) > K) e (‘fb —Tbo‘ > TK)

<P sup lge (Tp)| > inf ’Tb — Tf‘ r (Tp)
| T, ~T0|>TK |T,—T9|>TK

<P| sup |g(TH)|=TK inf r(T}) (S.14)
p<T,<T—p | T, —T2|>TK

=P (r;l sup  |ge (Tp)| > K) ,
p<Tp<T—p
where we recall that p < T, < T — p is needed for identification, and rp £ T inf T, ~T9|>TK r (1p) . Lemma
b

S.D.6 below shows that rr is positive and bounded away from zero. Thus, it is sufficient to verify that
the stochastic component is negligible as h | 0, i.e.,

swp lge (Ty)] = oy (1) (5.15)
p<T,<T—p
The first term of g (T}) is
2(69) (Z)M 2) (230 2) " (230 2) 7 Zo e (S.16)

Lemma S.D.5 implies that for any 1 < j < p, (Z2¢);, /Vh = O, (1) and for any 1 < i < q + p,
(Xe);q/ Vh = O, (1). These hold because they both involve a positive fraction of the data. Furthermore,
from Lemma S.D.3, we also have that Z)MZy and ZyMZy are O, (1). Therefore, the supremum of
(Z4M Zs) (Z5M Zo) ™2 over all Ty, is

sup (ZyM Zy) (Z5M Z3) ™" (Z5M Zo) < Z4M Zo = O, (1),
Ty

by Lemma S.D.3. By Assumption (2.1)-(iii), (ZéMZz)_1/2 ZhMe is O, (1) Op(vVh) uniformly, which
implies that (S.16) is O,(v/h) uniformly over p < T, < T — p. As for the second term of (S.10), ZyMe =
Op(V/h). The first term in (S.11) is uniformly o, (1) and the same holds for the last term. Therefore,
combining these results, supr, |ge (T3)| = O, (V/h) uniformly when IAy—Xo| > K. Therefore for some B > 0,
these arguments combined with Lemma S.D.6 below result in P(rg! sup,<p,<7—p 9 (Tp)| > K) < g, from
which it follows that the right-hand side of (S.14) is weakly smaller than e. This concludes the proof since
€ > 0 was arbitrary. [J

Lemma S.D.6. For B > 0, let rg = inf|Tb—T0\>TB Tr (Ty) . There exists a k > 0 such that for every e > 0,
b

there exists a B < oo such that P (rp > k) < 1—¢, i.e., rp is positive and bounded away from zero with
high probability.

Proof. Assume T}, < Tl? and observe that rp > rp for an appropriately chosen B. From the first inequality
result in Lemma S.D.1,

r(T) > (69) R (XaXa/ (T) ~ 1)) (X3X2) ™" (X0 X0) RSY,.
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When multiplied by 7', we have
X\ XA
0

0T, (X5X2) ™" (X Xo) ROY
b

Tr(Ty) > T (5%) R

/ XX _
0) R’ﬁ (X5Xa) ™ (X Xo) R6Y.
b

Note that 0 < K < B < h (T —Tp) < N. Then,
/ —
Tr (1) > (0%) R (XAXa/N) (X5X5) ™" (X(X0) ROY,

and by standard estimates for It6 semimartingales, X\ Xa = O) (1) (i.e., use the Burkholder-Davis-Gundy
inequality, recalling that | Ny—N?| > BN). Hence, we conclude that Tr (T;) > (6%)' R'O, (1/N) O, (1) R&%
> k > 0, where « is some positive constant. The last inequality follows whenever X\ X is positive defi-
nite since R’ X\ Xa (X5X2) ™" (X} Xo) R can be rewritten as R'[(X)Xo) " + (X3 Xa) 'JR. According to
Lemma S.D.3, X5 X5 is O, (1). The same argument applies to XX, which together with the the fact that
R has full common rank in turn implies that we can choose a B > 0 such that rp = inf |7, T0|>TB Tr (Tp)

satisfies P (rp > k) < 1 — e. The case with T}, > T} is similar and omitted. O

S.D.4.3 Proof of Proposition 3.2

Proof. Given the consistency result, one can restrict attention to the local behavior of the objective
function for those values of Ty, in By = {1, : Tn < T, < T (1 —n)}, where n > 0 satisfies n < \g < 1 — 1.
By Proposition 3.1, the estimator T, p will visit the set By with large probability as T" — oo. That is, for
any € > 0, P (fb ¢ BT) < ¢ for sufficiently large T. We show that for large T, fb eventually falls in the

set Bxr = {Tp: |Ny — N2| < KT~'}, for some K > 0. For any K > 0, define the intersection of By
and the complement of By r by

Dy 2 {Ty: Np< Ny < N(1-1),

Ny = N§| > K771}
Notice that
{‘Xb - )\0‘ > KT‘l} =
{‘Xb - )\0’ >KT ' e 1- 77)}
U{[R = 20| > KT 0% ¢ (0, 1 - m)}
o= ro|> K (1) N emi-nu{l¢m1-n},
and so
P[> KT ) <P (S ¢ (0. 1))
+Pq@—jﬂ>4(ﬁ%60%1—my
and for large T’

P(‘Xb—)\o‘ > KT_I) §E+P(’Xb_)\0‘ > KT 0 € (n, 1—77))

§e+P( sup Qr (Ty) > Qr (T£)> .

TbGDK,T
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Therefore it is enough to show that the second term above is negligible as h | 0. Suppose T} < Tl?.
Since Tj, = arg max Qr (T3) , it is enough to show that P(supg,ep, , Qr (Th) > Qr (T})) < e. Note that
this implies [T, — T| > KN 1. Therefore, we have to deal with a setting where the time span in Dk r
between N and NIS) is actually shrinking. The difficulty arises from the quantities depending on the
difference | N, — NP|. We can rewrite Qr (1) > Qr (I)) as ge (Ty) / |Ty — TP| > 7 (T}) , with g (T3) and
r (Tp) as defined above. Thus, we need to show,

— Je (Tb) . —1
Pl sup A1 2222 > inf Alr(Th) | <e.
<Tb€DK,T |Tb - T(9| TveDk,T ( b)

By Lemma S.D.1,

/ /
pi M)z b (6%) R’m (X5X5) " (X)Xo) RSY.
The asymptotic results used so far rely on statistics involving integrated covariation between continuous
semimartingales. However, since |Tb - T ,9] > K/N, the context is different and the same results do
not apply because the time horizon is decreasing as the sample size increases for quantities depending on
|Ny — N, l? | . Thus, we shall apply asymptotic results for the local approximation of the covariation between
processes. Moreover, when ‘T b — Tl?] > K/N, there are at least K terms in this sum with asymptotically
vanishing moments. That is, for any 1 < i, j < g+ p, we have E[xgxg,z\ Fh—1)h] = Eg?’j&il)hh, and note
that g/ Vh is i.n.d. with finite variance and thus by Assumption 3.1 we can always choose a K large
enough such that (h|T}, — Tl?|)71 XN XA = (h|T, — T,?Df1 ZZinH zrpayy, = A > 0 for all T, € D .
This shows that infr,ep, , h~'r (T}) is bounded away from zero. Note that for the other terms in r (T})
we can use the same arguments since they do not depend on [N, — N(?|. Hence,

—1
P ( sup b (TP - T)  ge(Ty) > B/N) <e, (S.17)
TyeDgk T

for some B > 0. Consider the terms of g. (1) in (S.10). When T}, € Dg 7, Z> involves at least a positive
fraction N7 of the data. From Lemma S.D.3, as h | 0, it follows that

-1
BT - T) ¢ MZy (ZMZ) " ZyMe

- (TI? - Tb>_1 W0y (h1/2> Op (1) Op (hm) - Toop (1%1,,
0

uniformly in Tj. Choose K large enough so that the probability that the right-hand size is larger than
B/N is less than /4. A similar argument holds for the second term in (S.11). Next consider the first
term of g (Tp) in (S.10). Using Zs = Zy + Za we can deduce that

(%) (Z0M2:) (230 25) ™ ZoMe
= (6%) (23 % Z4) M2) (Z,M 2,) ™" ZoMe
= (%) ZyMe+ (8%) ZpMe (S.18)

+ (69) (2aM22) (M 25) ™" ZoMe,
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from which it follows that

/ _ /
‘2(5%) (ZM Z5) (Z3M Zo) ™" ZoMe — 2 (8% ) (ZyMe)

- ‘ (5%) Z4Me (S.19)

+|(08) (Za022) (2312 (ZaMe).

First, we can apply Lemma S.D.3 [(vi) and (viii)], and Lemma S.D.4 [(i)-(ii)], together with Assumption
2.1-(iii), to terms that do not involve [N, — N?|, i.e.,

o (69) (260 Zo) = ht (6) (20 Z2) — h' (69) (ZhXa (X'X) 7 X'25)

(6%) (Zp2Za) 0\ [ ZaXa -1
= 2L At (6%) TASS (XX) X2 ).
Consider Z)\ Zx. By the same reasoning as above, whenever T, € Dg 1, (ZAZa) /R (TP — Tp) = O, (1)
for K large enough. The term Z\ Xa/h (T — T}) is also Oy (1) uniformly. Thus, it follows from Lemma
S.D.5 that the second term of (S.19) is O,(h'/2). Next, note that Z\Me = Zhe — Zh X (X' X)) Xe.
We can write

Z\Me

b
= Zkh€kh
(Tlg] —Ty) h (TO Tb foe ;+1

/ -1 /
— 07 Z Zkihxkh X X) (X 6) .
(Ty = Tp) h (k =T,+1 )
Note that the sequence {h 1/ 2zenh™ 1/ 2xkh} is i.n.d. with finite mean identically in k. There are at least K

terms in this sum, so (Zk Ty+1 2khTp)/ (TY — Tp) h is O, (1) for a large enough K in view of Assumption
3.1. Then,

(TTbh( f? zkhxkh) (X'X) ™ (X'e) = 0p (1) 0, (1) O, (7). (5.20)

k=Tp+1
when K is large. Thus,

1 1

/ 0, (1)
0. (1) = o (8°) 22 2 Y2 . 21
o=y n% (1) (TbO—Tb)h( ) A€+T§—Tb+0p< ) (5-21)

We can now prove (S.17) using (S.21). To this end, we sneed a K > 0, such that

21 g
(5%) Zkhekh
h TO T = Trt1

TO

> 4?\[) (S.22)

<P sup >
(Tb<T0 KN-1 8NH5 H)

Note that |1}, — T, 19] is bounded away from zero in Dg 7. Observe that (z/ V'h)(ern/V'h) are independent
in k& and have zero mean and finite second moments. Hence, by the Hajek-Réiny inequality [see Lemma

1 1

— Zkh€kh
hT T k=Ty+1
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A.6 in Bai and Perron (1998)],

Z Zkh €kh
T Tb L \/’ \/>

Ty+1

B
7 STV

P sup
T,<TP—KN-1

LG40 N1
= B> KNV

where A > 0. We can choose K large enough such that the right-hand side is less than £/4. Combining
the above arguments, we deduce the claim in (S.17) which then concludes the proof of Proposition 3.2. [

S.D.4.4 Proof of Proposition 3.3

We focus on the case with T, < Tjp. The arguments for the other case are similar and omitted. From
Proposition 3.1 the distance ]Xb — Ao| can be made arbitrary small. Proposition 3.2 gives the associated
rate of convergence: T(Xb — Xo) = O, (1) . Given the consistency result for Ny, we can apply a restricted
search. In particular, by Proposition 3.2, for large 7' > T, we know that {7} ¢ Dy 1}, or equivalently
T}, — TY| < K, with high probability for some K. Essentially, what we shall show is that from the results
of Proposition 3.1-3.2 the error in replacing T,? with T} is stochastically small and thus it does not affect
the estimation of the parameters 3°, 60271 and 5%72. Toward this end, we first find a lower bound on the
convergence rate for Xb that guarantees its estimation to be asymptotically independent from that of
the regression parameters. This result will also be used in later proofs. We shall see that the rate of
convergence established in Proposition 3.2 is strictly faster than the lower bound. Below, we use Tb in
order to construct Zs and define 20 £ 7.

Lemma S.D.7. Fiz~ € (0, 1/2) and some constant A > 0. For all large T > T, if |Nyy— N?| < AO, (h'~7),
then X’(Zo - Z()) = Op(hlf’y) and Z(I)(Z() — Zo) = Op(hlf'y).

Proof. Note that the setting of Proposition 3.2 satisfies the conditions of this lemma because Nb —
NY = O, (h) < AO, (h'™7) as h | 0. By assumption, there exists some constant C' > 0 such that

P(RY|T), — TP| > C) < e. We have to show that although we only know T, — TP| < Ch™, the error
when replacing T0 by T}, in the construction of Zs goes to zero fast enough. This is achieved because
]Nb NY| — 0 at least at rate h'™7, which is faster than the standard convergence rate for regression
parameters (i.e., vT-rate). Without loss of generality we take C' = 1. We have

70
_ 5 1 4
P —

Notice that, as h | 0, the number of terms in the sum on the right-hand side, for all T' > T, increases
to infinity at rate 1/hY. Since N, approaches NP at rate T-0-7), the quantity X'(Zy — 20)/h1_“/ is
a consistent estimate of the so-called instantaneous or spot covariation between X and Z at time Nl?.
Theorem 9.3.2 part (i) in Jacod and Protter (2012) can be applied since the “window” is decreasing at
rate h' =7 and the same factor h'~7 is in the denominator. Thus, we have as h | 0,

XA\ Za/' 7 5 X XN (S.23)

which implies that h~1/2X’ (ZO — 20) = O, (h'/277). This shows that the order of the error in replacing
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Zy by Zy = Zo goes to zero at a fast enough rate. That is, by definition we can write
Y = XB° + Zos% + (Zo - 20) 8% +e,
from which it follows that

X'Zo=XZy+0,(1), X' (Zo - 20) 8% =0, (1),

and Zy(Zo — 20)6% = 0p (1) . To see this, consider for example

N Tl? hl—'y Tl?
X' <Zo —Z0) =Y. Tpnaen = A= > mpwzn = R0, (1),
01 0|7

which clearly implies that X'Zy = X'Zy + op (1). The other case can be proved similarly. This concludes
the proof of the Lemma. [J

Using Lemma S.D.7, the proof of the proposition becomes simple.
Proof of Proposition 3.3. By standard arguments,

~ ~1—1

B— B0 X'X X'Z

VT |2 = s P vT
[5—5% X ZyZy

)

X/€+X/ Z() — 20) 5%
Zhe+ Z) (Zy — Zo) 5%

from which it follows that

~1-—1
X'X X'Z, 1 _
Sk S22 )= 0,0a 0 =50,

and a similar reasoning applies to Z[’,(Zo — 20)5%. All other terms involving Zo can be treated in analogous
fashion. In particular, the Oy, (1) result above follows from Lemma S.D.3-S.D.4. The rest of the arguments

(including mixed normality) follows from Barndorff-Nielsen and Shephard (2004) and Li et al. (2017) and
are omitted. [J

S.D.4.5 Proof of Proposition 4.1

Proof of part (i) of Proposition 4.1. Below C' is a generic positive constant which may change from
line to line. Let € denote the vector of normalized residuals €; defined by (4.1). Recall that T, =
arg maxt, Qr (1), Qr (1) = 07, (Z5M Z3) 67;,, and the decomposition

Qr (1) = Qr (V) = 8, (25M Zs) 51, — S0 (Z6M Zo) 519 (S.24)
= 0, {(ZM 25) (23M 2) ™" (24M Zo) — ZM Zo } 6 (S.25)
+ ge (Tp) , (S.26)
where
e (Ty) = 26}, (ZbM Z5) (Z4,M Zy) ™" ZyMe — 26}, (ZMe) (S.27)
' MZy (ZYMZy) ™" ZyMe — ' M Zy (Z)M Zo) ™" Zh Me. (S.28)
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Since gc(Tp) > [Ty — T2|r(T}), we have
P (‘X(, — )\0’ > K)
=P ([T, -1} > TK)

IN

Pl swp p7Plgm)| = inf b7V TP (1)
|T,~TO|>TK |Ty—T9|>TK

<P sup h Vg (T)|>TK inf h Y% (T)
p<T,<T—p | Ty —Tp[>TK
=P<rT1 sup h—1/2|ge<Tb>|zK), (8.29)
p<T,<T—p

where rp = Tinf\Tb—T0]>TK h=Y/2p (T}), which is positive and bounded away from zero by Lemma S.D.8.
b
Thus, it is sufficient to verify that

sup  h Y2 |ge (Thy)| = 0, (1) . (S.30)
p<T,<T-p
Consider the first term of ge (T3):
25}, (ZhM Zo) (Z5M Z5) ™* (24 M Z3) V2 ZoMe (S.31)

< onl/* (8°) (Z4M 2o) (250M 25) ™ (2,0M 25) ™17 ZoMe.

For any 1 < j < p, (Zg@)j71 /Vh = Op (1) by Theorem S.D.5, and similarly, for any 1 < i < ¢ + p,
(X€), /Vh = O, (1). Furthermore, from Lemma S.D.3 we also have that ZjM Zy and ZjM Zy are O, (1) .
Therefore, the supremum of (ZyM Zs) (ZéMZg)fl/2 over all Tj is such that

sup (Z4M Zs) (Z5M Zo) ™' (ZyM Zo) < Z)M Zy = O, (1),
Ty

by Lemma S.D.3. By Assumption 2.1-(iii), (ZéMZg)_l/2 ZoME is Oy (1) O,(v/'h) uniformly, which implies
that (S.31) is Op(v/h) uniformly over p < T, < T — p. In view of Assumption 4.1 [recall (4.1)], we need to
study the behavior of (X'e);,; for 1 < j < p+ ¢. Note first that As — Aol > K or N > |N;, — N)| > KN.
Then, by Ito formula, proceeding as in the proof of Lemma S.D.2, we have a standard result for the

local volatility of a continuous Ité6 semimartingale; namely that for some A > 0 (recall the condition
Tl %e = B > 0),

B 1V
E- Z TkhChh — / EXe,st|<9Z(TO_1)h < AR'/2,
€ 0 € NO—E b
T, —|T*| b

From Assumption 4.2, since ¥ x.¢ = 0 for all ¢ > 0, we have

Ty —|T") TY+T") T
X'e= > awmérn+h > Tkhekh + > TkhCkh
k=1 k=T —|T*|+1 k=T0+|T*]+1
=0, (W) + 7140, (W1=+12) 4 0, (W) = 0, (n'1?). (S.32)
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The same bound applies to Zse and Zje. Thus, (S.31) is such that
2h V2R (50) (2)M 2) (23M 2) ™M (230 2) 7 Zo e
= 20720460 0, (1) 0, (h12) = 0, (1) 0, (h1/4).
As for the second term of (S.27),
hoV28) (ZhMe) = 2h /4 (50)' (ZyMe) = Ch='/10, (h1/?) = CO, (/1)
using (S.32). Again using (S.32), the first term in (S.28) is such that, uniformly in 7Tp,
W2 M Zy (ZyM Zy) ™" ZyMe (S.33)
= h72B0, (h12) 0, (1) 0, (W12) = 0, (h/?) .

Similarly, the last term in (S.28) is O,(v/h). Therefore, combining these results, we have h~1/2 supy, |ge (Tp) |
= BO,(h'/*), from which it follows that the right-hand side of (S.29) is weakly smaller than e.

Lemma S.D.8. For B > 0, let rp) = inf\beT0\>TB Th*1/2r(Tb). There exists an A > 0 such that for
b

every € > 0, there exists a B < oo such that P (rpp, > A) <1 —¢.

Proof. Assume N, < Nl?, and observe that rr > rp, for an appropriately chosen B. From the first
inequality result in Lemma S.D.1,

XA X
0T,
- (50)’ R (XaXa/ (N = Ny)) (X5X5) ™" (X§X0) RO,

Th='2r (Ty) > Th™/2p!/? (50)'}%’ (X5X2) ™" (X(X0) RO

Note that B < h (T — T;) < N. Then

Th2 (1) 2 () R (XA Xa/N) (X5Xa)™ (X4X0) RO > 4,

by the same argument as in Lemma S.D.6. Following the same reasoning as in the proof of Lemma S.D.6,
we can choose a B > 0 such that rp} = inf|Tb_To|>TB Th~Y2y (Ty) satisties P(rpp > A) <1—¢e. O
b

Proof of part (ii) of Proposition j.1. Suppose T, < Tp. Let

-1
DK,T:{Tb: Nn<Ny,<N(1-n), Nb—N£’>K(T1*“> }

It is enough to show that P(supp,cp,. . Qr (Tp) > Qr(T})) < e. The difficulty is again to control the
estimates that depend on | N, — Nl?|. We shall show that

Ty, 6
P| sup h_3/2Ll”(I}) > inf KA (T) ) <e.
TyeDk T |Tb - Tb ’ TyeDgk T

By Lemma S.D.1,

X\ X
inf (1) > inf &R A =

X5X2) ™" (X(Xo) RS
T,eDg T T,€Dk T Tl?_Tb( 2 2) ( 0 0) h>
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. ce . T2
and, since |Tb —Tlg]] > KT*, it is important to consider X\ Xa = Zkb:TbH TEhxyy,. We shall apply
asymptotic results for the local approximation of the covariation between processes. Consider

b

TO

/
Z ﬂ?khxkh.
k=Tp+1

XpXa 1
W(TO —Ty) — h (TP —Tp)

By Theorem 9.3.2-(i) in Jacod and Protter (2012), as h ] 0

TO

1 b , P
PR — TkhTpp — 2X)(J\ﬂ% (S.34)
h (T9 — Th) kzm 1 g

since |Nj, — Nl?\ shrinks at a rate no faster than Kh'™* and 1/Kh'™% — oco. By Lemma S.D.2 this
approximation is uniform, establishing that

XX _
R32  inf (5.) RATA xrx VL (X! X)) RS
TbEI]%K,T( n) Tbo—Tb( 2 2) ( 0 0) h
X’AXA

= if ()R - (X}X2) "t (X0 Xo) RO,

T,€Dk,T (TI9 — Tb)
is bounded away from zero. Thus, it is sufficient to show that

Ty, 0
P{ sup h_3/2Lb’(]]l) > B <e, (S.35)
TyeDx Ty — 1|

for some B > 0. Consider the terms of g. (Tp) in (S.28). Using Zy = Zy+ Za, we deduce for the first term
that
8y (ZOM Zy) (ZyM Zo) ™ ZaMe
— &, ((Zy + Za) M Zy) (ZyM Z) ™ ZyMe
— 8, ZhMe =+ 8y Zh Me + 8, (Z\M Zy) (Z5M Z3) ™" ZyMe. (S.36)

First, we can apply Lemma S.D.3 [(vi)-(viii)], together with Assumption 2.1-(iii), to terms not involving
|Ny — N?|. The third term is such that

1 —(l-r ZhZy  ZhXa 1
K== (23 M Zy) = 28 = 2570 (X'X) 7 X'2,. (S.37)

Consider Z)\ Za (the argument for Z) X is analogous). By Lemma S.D.2, Z)\ Zx/Kh'™" uniformly
approximates the moving average of X7z over (Nl? — KT"h, Ng]. Hence, as h | 0,

ZNZAJKRW' ™" = BO, (1), (S.38)

for some B > 0, uniformly in Tj. The second term in (S.37) is thus also O, (1) uniformly, using Lemma
S.D.3. Then, using (S.32) and (S.37) into the third term of (S.36), we have

1

L2 o, (ZAM2) (24M 2) ' ZaMe (5.:39)
1o _1a(s0\ (ZaMZs -1
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< h_1/4Z[;Ah]\14ZRQOp (1) Op (h1/2> < Op (h1/4) ’

where (Z5MZy) ™' = O, (1). So the right-and side of (S.39) is less than /4 in probability. Therefore, for
the second term of (S.36),

—lh—(l—ﬁj)—l/Qé‘/ Z/ Me

1/2 h71/2 , T , Jon 1 ,
h1 =) Z Zkh€kh ~ 77 Oh Yz | (X'X) T (X'e)

k Tb+1 kZTb+1

0 TO
B—1/2 Ty 1 p-1/4 b -
< Kh1 0% Z Zkh€kh — B? e (50> Z 2kn T | (X'X) ' (X'e)

k=T, +1 k=Ty+1
B-1/2 7,
< TR0 D Amern —h h~140, (1) 0, (h1/2). (S.40)
k=Ty,+1

Thus, using (S.36), (S.27) is such that
264 Zh Me + 26}, Z\ Me + 26}, (Z\M Z5) (Z,M Z5) ™" ZyMe — 26}, (Z)Me)
— 26, Z\ Me + 26, (Z\M Z5) (Z5M Zo) ™" ZyMe

0
(50)/ g: zwnlrn — 10, (1) O, (h1/2> +Op (h*1/4) ;

k=Tp+1

h—1/2
<
— Khl-k

in view of (S.39) and (S.40). Next, consider (S.28). We can use the decomposition Zs = Zy + Zx and
show that all terms involving the matrix Za are negligible. To see this, consider the first term when
multiplied by K ~1h~(3/275) then

K h=G2=m e M 7y (Z5M Zy) ™" ZyMe (S.41)
= K W= BP0 M Zy (ZyM Zy) ™ ZaMe
+ KGR MZ (ZyM Zo) ™" ZyMe.

By the same argument as in (S.32), ZbMe = O,(h'/?). Using the Burkhélder-Davis-Gundy inequality,
the estimates for the local volatility of continuous It6 semimartingales yield

EMZp=¢Zn— X (X'X) " X'Za
= 0, (Kn*17%) — 0, (h1/?) 0, (1) O, (KB ").
Thus, the second term in (S.41) is such that

K th=GlR=mg Mz (Z5MZy) ™" ZyMe (S.42)
- B (K‘ h—(3/2—/§)> 0, (Khl—n-i-l/Q) 0,(1)0, (h1/2)
= BO, (n'/?).

Next, let us consider (S.28). The key here is to recognize that, on Dg 7, T, and Tf lies on the same
window with right-hand point Ng. Thus the difference between the two terms in (S.28) is asymptotically
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negligible. First, note that using (S.32),
& M2y (ZM Zo) " ZoME = O, (h12) 0, (1) O, (h'/?) = O, ().

Applying Zy = Z9 + Z A repeatedly in (S.41), and noting that the cross-product terms involving Z are
op (1) by the same reasoning as in (S.42), we obtain that the difference between the first and second term
of (S.28) is negligible. The more intricate step is the one arising from

' MZy (ZAMZy + Z\M Z5) ™" ZiMe — ¢ M Zo (Z,M Zo) ™" Z)Me
= ¢ MZy [(Z5M 2y % Z\M Z5) ™" — (ZyM Z) ™| ZgMe.
On Dg ., | Ny — NZE)‘ = Op(Khl_”), and so each term involving Za is of higher order. By using the
continuity of probability limits, the matrix in square brackets goes to zero at rate h'™*. Then, this

expression when multiplied by h~3/2=%) k=1 and after using the same rearrangements as above, can be
shown to satisfy [recall also (S.32)]

h R KM 2y [(Z)M 2y + ZAM Z,) !

_ (Z(’)MZo)fl} Z\Me
= b= RK0, (h) [(26M 2y + ZWM Z5) ™" = (ZyM Zo) ™|
= B2 K10, (h)

x [(2oMZo + ZyM Z)\ + Z\M Zy)”

= b= KT10, (h) 0, (B1F) = Oy (W) 0, (1).

- (zyM2) 7

Therefore, (S.28) is stochastically small uniformly in 7; € D when T is large. Altogether, we have

TO
T) h—1/2 b
h71/2 ge( b <2 5h E ZELhEEh
‘Tb —Tb0| Khl-x k= Tyt 1

~h710, (1) 0, (K12) + 0, (h71/1).

Thus, it remains to find a bound for the first term above. By It6’s formula, standard estimates for the
local volatility of continuous It6 semimartingales yield for every Tp,

E (Hiz (TQ, Tf) S (TQ, Tg)) H Ic%,h) < BR'/2, (S.43)
79 - B+1)|T"
for some B > 0. Let Ry = Ekb:TE,(BH)LTHJH 2knerh, Rop (Ty) = Zk TSJ; i zrherh and note that

0
ZziTQJrl ZkhCkh = Rl,h + Rg}h (Tb). Then, for any C' > 0,

—1/2 7
P sup 250 Z zeneknll > C (S.44)
T,<T?—KT*" Kh k=Ty+1

h—1/2
- ( sup o0 [Run + Rop (Th)[| = 27 10)
Ty<TO—KT*

< P (s Il > 470 ] n202)
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+P( sup hl K||th(Tb)y|>4 10H50H h1/4)
T, <TP—KT*

Consider first the second probability. By Markov’s inequality,

P sup [Ron (Ty)l| > 47" C |18°)  n*
(Tb<TI9KT“ Khi=x H H

<p 41 0 1/4
- (Tb<;(l)lpKTn Khl- i fen (Th)|| > ¢ H(S H h
K 1 0 1/4
< (K/B)T P(HKhl “Rop (Th)|| > 4710 |6 H h )
CLELI PSP (. )
< - TE||——-rr— T
= cr B (B+1)Khi=* 1B2,p (Th)
<G (B+1) B0 hmr AT < ¢ ||| 0,
for a sufficiently large » > 0. We now turn to R; ;. We have,
-1 0 1/2
P el w2
(B +1) g
-1 —(1—k ~
< P(K (B+1)"t =0 > ZkhCkh

k=TQ—(B+1)[T"]|+1

> 20 )

<P ((B +1)K0p(1) > 471C H50H_1> 0,

by choosing K large enough where we have used (S.43). Altogether, the right-hand side of (S.44) is less
than e, which concludes the proof. [J

Proof of part (iii) of Proposition j.1. Observe that Lemma S.D.7 applies under this setting. Then, we
have,

X'e+ X' (Zo - ZO) 5
Zie + Zy (Zo — Zo) o

B—-6] |X'X X'Zy|
‘Fla 5 = 2% 27 ’

so that we need to show that

- Y (Zo - 20) 5, 5o,

X'X X'Z,
h1/2

ZLX  ZLZ

and the limiting distribution of X'e/ h'/? is Gaussian. The first claim can be proved in a manner analogous

to that in the proof of Proposition 3.3. For the second claim, we have the following decomposition from
(S.32),

Ty —-|T") TY+|T") T
! ~ —1/4 > 5
X'e= E Trnern +hY § Tkh€kn + E TkhCkh
k=1 TP —|T"]+1 k=TQ+|T*|+1
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£ Rip+ Rop + R3p.

0__ LTNJ

By Theorem S.D.5, h_1/2R17h & oawy (0, V1), where 1} 2 Tlim TZZ”ZI E(zkna}y,eqp,). Similarly,
— 00

WV2Ryp S5 N (0, V3), where Vs 2 A TS o gy Blemnay @) I s € (0, 1/4), A=07
TO+|T%|
ZTO [T+ ]+1

h—3/4 E;O—FtTﬂj TrhEkh o1tk = 1/4, then hil/Qngh — ZXe,Nl? in probability again by Theorem
9.3.2 in Jacod and Protter (2012). Since by Assumption 4.2 ¥ x.; = 0 for all £ > 0, whenever & € (0, 1/4],
X'e/ h/? is asymptotically normally distributed. The rest of the proof is simple and follows the same

steps as in Proposition 3.3. O

TLhChh Lt EXE’NI? by Theorem 9.3.2 in Jacod and Protter (2012) and so hfl/2R2,h =

S.D.4.6 Proof of Proposition 4.2
Proof. By Lemma 4.1,

Qr (Ty) — Qr () = ~6, (ZZ4) 61 % 26/, (Zhe) + 0, (h¥7).

Divide both sides by h to yield,

W (@r (@) - ar (1)) = -0 (20) (22 22)
22(20) (Z2) 4o (11270).
Note that zgn/Vh ~ in.d. A (0, Sgp) and exp/vVh ~ ind. A (0, 02 ;). Thus,
B2 (Qr (1) - Qr (1))
i V()
7 () (Zf 7)o ()
=0, () £ 2 (20) (22 L) 4o, (1170).

Also T, = T? + [vT*], and

/
B (Qr (1) - Qr (1)) = 2(8°) # (v).
The continuous mapping theorem then yields the desired result. [J

S.D.4.7 Proof of Lemma 4.1

First, we begin with the following simple identity. Throughout the proof, B is a generic constant which
may change from line to line.

Lemma S.D.9. The following identity holds
(00 { Z6M Zy — (ZyM Z5) (24M Z5) ™" (Z5M Z) } 3

= (0n) {ZAMZa — (ZWM25) (25M Z5) ™" (Z4M Z4) } 6.
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Proof. The proof follows simply from the fact that ZyM Zy = Z)M Zy + Z\ M Z5 and so

(0)' { Z6M Zo — (Z5M Zy £ Zy\M Z5) (Z5M Z5) ™ (Z5M Zg) } o
= (0n) {ZAM Zo — (ZAM Z3) (Z5M Z5) ™" (Z5M Z,)
— (ZAM25) (25M Z2) ™ (25M Z) Y
= (00) {ZAMZa — (ZAM Z5) (25M Z5) ™" (Z4M Z4) } 6.0

Proof of Lemma /.1. By the definition of Q7 (Tp) — Q7 (Tp) and Lemma S.D.9,

Qr (Ty) — Q7 (To)

= —0), {Z/AMZA — (ZaM2) (25M Z5)~" (ZQMZA)} On + ge (Th, 0n) » (S.45)

where
ge (Ty, 61) = 200, (Z)M Zo) (Z5M Z3) ™" ZoMe — 26, (Zh Me) (S.46)
& MZy (ZyMZy) ™ ZoMe — & M Zy (Z)M Zo) " Zh Me. (S.47)

Recall that N, (u) € D (C) implies T (u) = TP + uT*, u € [~C, C]. We consider the case u < 0. By
Theorem 9.3.2-(i) in Jacod and Protter (2012) combined with Lemma S.D.2, we have uniformly in u as
hl0

0
Tb

1 b
T Z TkhTh — ZXX,NS <S48>
k:Tl?-f—uT”

Since Z5\ X = Z)\ X, we will use this result also for Z\ X/h'™%. With the notation of Section S.D.4.1
[recall (S.6)], by the Burkholder-Davis-Gundy inequality, we have that standard estimates for the local
volatility, is such that

S 0 1/2
[ (S2x (7o 72) = S gyl Fap-ays) | < B1Y2. (5:49)
Equation (S.48)-(S.49) can be used to yield, uniformly in 75,
Gt ZNX (X'X) TN X Za = 0, (1) X' Za, (S.50)
and
ZNMZy = Z\Zn — ZNX (X'X) ™ X' Z5 = O, (n) — Op (104) Op (1) Oy (1). (S.51)
Now, expand the first term of (S.45),
! 7l ! 7l 1 7l v\~
By Lemma S.D.3, (X'X) ™! = O, (1) and recall that 8, = h'/45°. Then,

Ui Oh ZNM ZAO, = Uy 5 8 ZaSh — Uy L 0h Z0X (X' X) ™" X' Z a6, (S.53)
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By (S.50), the second term above is such that

2 2\ X _ 2
HaOH pH2EAT (XIX)T X 7 = HaoH W20, (1) X' Za, (S.54)
h
uniformly in 7j (u). Therefore,
2
b 6 ZNM Z A, = 0, 16, Z Db — HaOH h20, (1) 0, (1) . (S.55)

In the last equality the second term of 6'Z\ MZa0 is always of higher order. This suggests that the
term involving regressors whose parameters are allowed to shift plays a primary role in the asymptotic
analysis. The second term is a complicated function of cross products of all regressors around the time of
the change. Because of the fast rate of convergence, these high order product estimates around the break
date will be negligible. We use this result repeatedly in the derivations that follow. The second term of
(S.45) when multiplied by ¢, ! is, uniformly in T (u),

b 6 (ZWM Z) (Z4M Zo) ™ (ZbM ZA) 6}, = H(SOH h20, (1) 0, (1) O, (¥n) ,

where we have used the fact that Z\ M Zs /v, = Op (1) [cf. (S.51)]. Hence, the second term of (S.45),
when multiplied by 1/1;1, is Op <h3/ 2_“) uniformly in T}. Finally, let us consider g, (Tp, d5,) - Recall that ey,

defined in (4.1) is i.n.d. with zero mean and conditional variance Ug,k—lh' Upon applying the continuity
of probability limits repeatedly, one first obtains that the difference between the two terms in (S.47) goes
to zero at a fast enough rate as in the last step of the proof of Proposition 4.1-(ii). That is, for T large
enough, we can find a c¢p sufficiently small such that,

Ut €M Zy (ZM 25) ™" ZoMe — & M Zy (Z4M Zo) ™" ZgMe| = o, (crh).

Next, consider the first two terms of g (T, 05) . Using ZgM Zy = ZyMZy + Z)\ M Z5, it is easy to show
that

2h1/4 (8°) (Z)M 22) (Z3M Z2) ™ ZoMe — 2m'/* (8°) (ZgMe)
= 2n!/4 (8°) Z/ A Me 204 (8°) 2/ AM 25 (230 25) " ZoMe. (S.56)
Note that, uniformly in T} (u),

1h1/4<

!/

Z'A\MZ,

P
/‘ZAQZA 0) 51/4 '
) +(5°) nti0, (1)

oo, ], )

‘)
(5 ) 7' AT+ (50) pi/aZaX (X'X)" X',
n

0«1

where we have used (S.48) and the fact that (X’X) " and X’Z, are each O, (1). Recall the decomposition
n (S.32):

X'e = 0, (W= 11) 4 0, (h1/2) (S.57)
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Thus, the last term in (S.56) multiplied by ¢, * is such that
2t (8°) 2/ AM 25 (250 2,) ZiM e
= w45 0, 1) 0, (1) [0, (B=Y4) + O, (h1/?)]
=[] #20n W 0, (172) = 8% 05 ().
The first term of (S.56) can be decomposed further as follows
2p1/4 (50)' Z'AMe = 2h'/* (50)' Z'se 201 (8°) Z/ A X (X'X) 7 Xe.

Then, when multiplied by 1/1,:1, the second term above is such that, uniformly in 7Ty,
W/ () (25X un) (X'X) 7 Xe
/
=14 (6°) 0, (1) 0, (1) [0, (W= + 0, (nV/2)] = 0, (n*/1)
where we have used (S.48) and (S.57). Combining the last results, we have uniformly in T},
/
Ui ge (T, 80) = 20114 (8°)' (Zhe/vn)
+ 0, (B¥4) + 6% 0p (B¥*) + 0y (crh),
when T is large and cp is a sufficiently small number. Then,
ot (Qr () — Qr (7))
= —(5h (Z/AZA/’(/J;L) 5h + 2(5;1 (Z/Ae/¢h)
+ 0, (B275) + 0, (W) + 6] 0 (h¥*) + 0, (crh).

Therefore, for T' large enough,
' (Qr (1)) = Qr (1Y) = =0n (Z6Za/vn) o % 267, (Zhe/tn) + 0, (h'/?) .

This concludes the proof of Lemma 4.1. [J

S.D.4.8 Proof of Theorem 4.1

Proof. Let us focus on the case T, (v) < TP (i.e., v < 0). The change of time scale is obtained by

a change in variable. On the old time scale, by Proposition 4.1, N, (v) varies on the time interval
[ND — |v| h1=F, N + |v| R'=%] with v € [-C, C]. Lemma 4.1 shows that the conditional first moment of
Qr (T (v)) — Q7 (TY) is determined by that of —d, (Z5\Za) 0, & 25}, (Z\e) . Next, we rescale time with
s+t 2 ¢ s on D(C). This is achieved by rescaling the criterion function Q7 (T} (u)) — Qr (TY) by
the factor ¢; . First, note that the processes Z; and e} [recall (2.3) and (4.1)] are rescaled as follows on

D(C). Let Zyo 2 4, *Zy, Wyew 2 4, /> W, 4 and note that

AZys =0y P07 dWse,  AWyes =1 00 sdWes,  with s € D(C).
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For s € [N) — Ch'=", NQ + Ch'=*], let v = ¢; ' (N — s) and, by using the properties of W s and the
fact that oz, 0c s are .#;-measurable, we have

dZd,,t == UZ,tdWZ,tu de,,e’t = O-e,tdWe,t, with ¢ € T(C) . (859)

This can be used into the following quantities for N, (v) € D (C). First,

Ty
Vi 20T = Z 24 kh 2, kho
k‘ZTb(’U)+1
which by (S.58)-(5.59) is such that
7y
Vi ZhZA = Y. ZnZkns veD(C). (S.60)
k=TQ2+|v/h]
Using the same argument:
7y
w}:lZ’Ag = Z ZLh€Ehs v e D* (C) . (S.Gl)

k=TP+|v/h]
Now Ny (v) varies on D* (C). Furthermore, for sufficiently large 7', Lemma 4.1 gives
Qr(Ty) = Qr (T9) = —0n (ZhZa) n + 20, (Zie) + 0, (h1/?),

1/2

and thus, when multiplying by h™"/“, we have

Qr (1) = (6°) 2424 (%) £2(8°) (n72242) + 0, (1),

since on D* (C), egp ~ in.d. A (0, Ul%,k—lh)7 Ohk = O(h*1/4)ae7k and €y, is the normalized error [i.e.,
€xn ~ in.d. A(0, Uik_lh)] defined in (4.1). Hence, according to the re-parametrization introduced in the
main text, we examine the behavior of

7 T
QT (9*) = — (50)/ ( Z Zkhdgh) 50 +2 ((5())/ (h1/2 Z Zkhgkh) . (862)
k=Tp+1 k=Ty+1

For the first term, a law of large numbers will be applied which yields convergence in probability toward
some quadratic covariation process. For the second term, we observe that the finite-dimensional conver-
gence follows essentially from results in Jacod and Protter (2012) (we indicate the precise theorems below)
after some adaptation to our context. Hence, we shall then verify the asymptotic stochastic equiconti-
nuity of the sequence of processes {Q1 (-), T > 1}. Let us associate to the continuous-time index t a
corresponding D* (C')-specific index t,. This means that each ¢, identifies a distinct ¢ in D* (C') through
v as defined above. More specifically, for each (-, v) € D* (C'), define the new functions

T T
Jzn() & D ZnZim, Jen ()2 3" zme,
k::Tb(’U)-i-]. kZTb(’U)-i-l
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for (T (v) +1)h < t, < (Tp (v) +2) h. For v < 0, the lower limit of the summation is 7} (v) + 1 =
TP+ |v/h| and thus the number of observations in each sum increases at rate 1/h. The functions {Jz, (v)}
and {Jep (v)} have discontinuous, although cadlag, paths and thus they belong to D (D* (C'), R) . Since

Zt(] ) (j =1,..., p) is a continuous It6 semimartingale, we have by Theorem 3.3.1 in Jacod and Protter

(2012) that Jzp (v) "= [Z, Z]1 (v), where [Z, Z]1 (v) 2 [Z, 2V nosn| = 125 Zlnj,ny - and recall by
b v

Assumption 2.3 that [Z, Z], (v) is equivalent to (Z, Z), (v) where (Z, Z), (v) = (Z, Z),1, /1) (v). Next,

let #, (v) = h=/2J 1, (v) and #4 (v fNO 0 ze,sdAWL* where Wl* is defined in Section S.B. By Theorem

5.4.2 in Jacod and Protter (2012) we have #}, (v) = (v) under the Skorokhod topology. Note the
that both limit processes [Z, Z]; (v) and #; (v) are continuous. This restores the compatibility of the
Skorokhod topology with the natural linear structure of D(D* (C), R). For v < 0, the finite-dimensional
stable convergence in law for Q (-) then follows:

_ Lr— / /
Qr (0757 = (6°) (2, 2), (v) 8" +2(8°) #4 (v),
where Ef—; ° signifies finite-dimensional stable convergence in law. Similarly, for v > 0,
_ Lr—s / /
Qr (07) 757 = (8°) (2, 2), (v) 6" + 2 (3°) #4 (v).

Next, we verify the asymptotic stochastic equicontinuity of the sequence of processes {Qr (-), T > 1}.5

For 1 <i <p, let Chk 2 oiekn, ey O 2 Bl F(k-1)n), and C**(l Cf% - C;,(I?' For 1 <14, j <p, let
(4 () (i.4)

CZh k= = 2 zgn — EZ,(k—l)hh’

Gk 2 E 2020 = 250wl Fan)

and CZ*}% CZ (W 2(232 Then, we have the following decomposition for Q7 (8*) £ Qp (8*)+(5°) (Z, Z), (v) &
(if v <0, and defined analogously for v > 0),

Qr(67) = iQ’"’T (67), (5.63)
where
Qur (02— (") (Zczm)a, Q2,T<9*>é—(6°)'<ijc**z,h,k> o,
Qar (07) 2 () ( WZm) and Qi (07) 2 (8°) (h—l/?c*h,k»
where 37, stands for %o\, Then,
B O] <K i o

5 Although in this proof it is not necessary to consider a neighborhood about §° while proving stochastic equicon-
tinuity, this step will be needed to justify our inference methods later. Thus, this proof is more general and may be
useful in other contexts.
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which follows from Jacod and Rosenbaum (2013) given that ¥z, = 0 identically by Assumption 4.2. As
for Ql,T (0, v), we prove stochastic equicontinuity directly, using the definition in Andrews (1994). Choose
any € > 0 and 77 > 0. Consider any (6, v), (6, ©) with v < 0 < ¥ (the other cases can be proven similarly)
and 0 = & + Cpx1, Where ¢,x1 is a p X 1 vector with each entry equals to ¢ € R, with 0 < ¢ < 7 < o0, then

@17 (07) - Qur (¢7) |

B Ty(0) B Ty
=8| > Cznp|o-¢ S Coneld

k=TQ+1 k=T, (v)+1
70+ |/h] T, (9) 7y
= |Cpx1 S Conn a8 DD Conr— D, Coax |9
k=TP+1 k=TQ+1 k=T0+|v/h]
Ty () TP+|v/h) 7,
<K Y | Z = Do Coma| 1617
k=TQ+1 =TP+1 k=T?+|v/h]
T)+v/h) T,(9)
<Kk |(?) Y + 3 10

k=TP+1 k=TQ2+|v/h]

By Ito’s formula [|(7 ), || = O(h3/?), and so

‘QIT QIT( ) <

K (0710, (h2) O () + 3° 5710, (1972) 0 (7))
K (0, (W/2) 0(7) + 8] 0y (/) O(7))

which goes to zero uniformly in 6* € © as 7 — 0. Next, consider Qy r (#*) and observe that for any
r > 1, standard estimates for Ito semimartingales yields E(||C5", x|I"| Zr—1)n) < K;h". Then, by using a
maximal inequality and choosing r > 2,

r\ 1/r
AR
(0,v)eD*(C)

and thus we can use Markov’s inequality together with the latter result to verify that @27T (60%) is stochas-

2
| hh < KR 0, (S.65)

tically equicontinuous. Turning to @41 (0),

Qur (07) = Qur (07)]

) T9+|v/h) TP
=o' [ hY/2 S CGar| -9 hol2 > Gk
k=T0+1 k=T +|v/h]
T2+|v/h)
=l [ P72 D7 s
k=T +1
T2 +|v/h] T
T R E D SO e W e
k=T0+1 k=T +[v/h]
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TP +|v/h)

<KW || llepeal
k=TQ+1
TP+ |v/h] TP
HRTEST Gk DT Gl 101D
k=T0+1 k=T +|v/h]
TO+|v/h) TP+v/h]
= o PO DI S THY Y D DI (oW ]
k=TQ+1 k=T +|v/h]

By the Burkholder-Davis-Gundy inequality, [|C7 ), .|| < K h3/2 (recall Sz, = 0 for all ¢ > 0), so that

‘@4,T (0) — Qur (9_*)‘ < K(Ah™ V2R 0320 (1)
+ 1612 A= 2 1320 (1))
K (O () +6* 0 (7)) .

Then for every n > 0, with B (7, (0, v)) a closed ball of radius 7 > 0 around 6*, the quantity

lim supP [ sup Qur (07) — Qur (é*)’ >nl, (5.66)

k10 0*€0:0*€B(, 0%)

can be made arbitrary less than £ > 0 as h | 0, by choosing 7 small enough. Combining (S.64), (S.65)
and (S.66), we conclude that the process {Q (0, v), T > 1} is asymptotically stochastic equicontinuous.
Since the finite-dimensional convergence was demonstrated above, this suffices to guarantee the stable
convergence in law of the process {Qr (0, v), T > 1} toward a two-sided Gaussian limit process with drift
(6°)[Z, Z].(+) 6°, having P-a.s. continuous sample paths with .%#-conditional covariance matrix given in
(S.1). Because N(be7T — Xo) = Op (1) under the new “fast time scale”, and D* (C') is compact, then the
main assertion of the theorem follows from the continuous mapping theorem for the argmax functional.
In view of Section S.D.4.10, a result which shows the negligibility of the drift term, the proof of Theorem
4.1 is complete. [

S.D.4.9 Proof of Theorem 4.2

Proof. By Theorem 4.1 and using the property of the Gaussian law of the limiting process,

T (6. 0) 55° 2 (0) = —(50):<Z, Z>1(v)50+2((50)i9«//,1(50))1214/;(@), it v <0
() (2. 20, ()20 + 2 () 22 (00) W5 ), >0

By a change in variable v = 9~1s with ¥ = ((6°)' (Z, Z), 6°)?/(6°)'Qy 1(6°), we can show that
argmax./# (v)
veA

d
= argmax¥ (s),
s€A*
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where
B wr (s), if s <0
AV(S) = (50)’< > 50 0/ 0 1/2
sl [ (8°) 2w .2(8°) . .
_ (60)l( > 50 02 + ( (50)/5—2%,1(50) W2 (S), lf S Z 0,

and we have used the facts that W (s) Ly (—s), W (es) 4 |2 W (s), and for any ¢ > 0 and for any
function f (s), argmaxscf (s) = argmax, f (s). Thus,

argmax.7¢ (v)
veA

d
= argmax
sEA*

(6 (2, 2, 8°)°

(69) Q1 (0°)

Y (s),

and finally by the continuous mapping theorem for the argmax functional,

(6% (2. 2), 8’
() 21 (59)

= argmax”? (s).
s€A*

N (Rox = o)

This concludes the proof. [

S.D.4.10 Negligibility of the Drift Term

We are in the setting of Section 3-4. In Proposition 3.1-3.3 and 4.1, the drift processes p.+ from (2.3) are
clearly of higher order in h and so they are negligible. In Theorem 4.1, we first changed the time scale

and then normalized the criterion function by the factor h~/2. The change of time scale now results in

dZ'L/},s = %:UZMZ,SdS + w;:l/20'Z,deZ,s, dW’L/},e s wh 12

Oe,sAWe s, (S.67)
with s € D(C). Given s + t = 1), 's, we have 1/);1/2;4275(15 = w;lﬂuz’swh (ds/vn) = pzsbddt with
¥ = 1/2. Then, as in (S.59), dZy; = wguzjtdt+azjtdW2,t and dWy, ¢y = 0edWe with t € D* (C). Thus,
the change of time scale effectively makes the drift pz sds of even higher order. We show a stronger result
in that we demonstrate its negligibility even in the case ¥ = 0; hence, we show that the limit law of (S.62)
remains the same when p.; are nonzero. We set, for any 1 <7 <pand1<j <q+p,

. kh ) . kh )
e [0 as e [T s
(k=1)h (k=1)h

. p kh . q+p
Z(()gh 2 Z/( U(Zf’?dWér), and l‘o]kh = / UXs dW)(fr)-

r=17(k—1h

Note that '
S0 = s+ e+ S+ Sl

Recall that uig) is O (h) uniformly in k, and note that p Z(Zk):r(()],)ch + u*Z(Zk)z(()f;ch follows a Gaussian law with
zero mean and variance of order O (h3). Also note that on D* (C), T — T, — 1 < 1/h, where a;, < by, if
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for some ¢ > 1, b /c < ap, < cby. Then,

Ty Ty
*(1)  *(5) (i) (7)
Z Zkhxkh = > g pixh + > Kz 1T6 kh
k=Ty+1 f— Tb+1 k—Tb—i-l
i *(J
+ Z Zo kh:u kT Z Zo kh% kh
k=Tp+1 k= Tb+l
(h1/2) +op (h1/2) + Z Zo, khx(()jl)ch
k=Ty+1

Therefore, conditionally on X% = {u.¢, 0.4},+,, the limit law of

P 0
@T(H*): ( ) ( Z zkhzkh>5 +2((50) (h_1/2 Z Zkhgkh)y

k=T,+1 k=Ty+1
is the same as the limit law of
TO TU
0)’ 0 —1/2 - ~
- ((5 ) Z 20 khzo kh (5 + 2 ((5 ) h Z 20,kh€kh | >
k=Ty+1 k=T, +1

which completes the proof of Theorem 4.1. [J

S.D.4.11 Proof of Proposition 5.1

Proof. Replace &1, &2, p and ¥ in (4.7) by their corresponding estimates &1, &2, p and ¥, respectively.
Multiply both sides of (4.7) by A" and apply a change in variable v = s/h”. Consider the case s < 0.
On the “fast time scale”, W* is replaced by Wl’h (s) = Wi (sh") (s <0), where Wy, (s) is a sample-size
dependent Wiener process. It follows that

—h_“% + R, (Ws) = —’”2| + W7 (v).

A similar argument can be applied when s > 0. Let ¥ (s) denote ¥ (s) constructed with the proposed
estimates in place of the population parameters. Then,

h™" argmasx ¥ (s) = argmax ¥ (v)
s€[(m=2) 9, (1—7r—,\b)7§] ve[(m—Xo)9/h2%, (1—m—X, ) 0/h2~]
= argmax v (v),

vE[(T—X0), (1—7m—Xo)V]

which is equal to the right-hand side of (4.7) since

o= [0 2 () 2 200°) 1 (2) s (7).

Therefore, equation (4.7) holds when we use the proposed plug-in estimates. [
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S.D.5 Proofs of the Results in Section S.C.2

The steps are similar to those used for the case when the model does not include predictable processes.
However, we need to rely occasionally on different asymptotic results since the latter processes have
distinct statistical properties. Recall that the dependent variable ApYy in model (S.2) is the increment
of a discretized process which cannot be identified as an ordinary diffusion. However, its normalized
version, 17(k:—1)h = hl/QY(k_l)h, is well-defined and we exploit this property in the proof. ApY} has first
conditional moment of order O(h~'/?), it has unbounded variation and does not belong to the usual class

of semimartingales.®

The predictable process {Y(k_l)h}le derived from it has different properties. Its
“quadratic variation” exists, and thus it is finite in any fixed time interval. That is, the integrated second

moments of the regressor Y(;_1);, are finite, i.e., we have

5 (o)’ i(m )} = i( T n) = 0,1,
k=1 k=1 k=1

by a standard approximation for Riemann sums and recalling that }N/(k—l)h is scaled to be O) (1) . Then it
is easy to see that {17(k71)h};:f:1 has nice properties. It is left-continuous, adapted, and of finite variation
in any finite time interval. When used as the integrand of a stochastic integral, the integral itself makes
sense. Importantly, its quadratic variation is null and the process is orthogonal to any continuous local
martingale. These properties will be used in the sequel. In analogy to the previous section, we use a
localization procedure and thus we need the following assumption related to Assumption S.D.1.

Assumption S.D.2. Assumption 4.2 and S.C.1 hold, the process {XNQ, Dy, Zi}i>0 takes value in some com-
pact set and the processes {i.4, 0.1 }1>0 (except {p!;}i=0) are bounded.

Recall the notation M = I — X (X’X)~" X', where now
RY2 Yoh  ARD, ALZ]
h2 Yih AyDhy ARZS
x=| . 0 Tt . (S.68)
: : : :
hY2 Yruh ApDL ARZE Tx(gtpt)
Thus, X'X is a (¢ +p+2) x (¢ + p+ 2) matrix given by {al as as a4] , where
ST h W2y, ( (k:—l)hh)
2
W2y (Y(k—l)hh) k=1 (Yk Hn b )

a] — y - )
Zszl hl//Q (ApDy) i1 (AnDy) (Y(k—l)hh)
1/2
D=1 B (AnZy) 25:1 (AnZp) (Y(kfl)hh)
ko1 W2 (A, D) Yot B2 (AR Z'E)
vy — | ZH QDY) (Yoowh) | | SE (ARZ0) (Yaounh)

X5 Xp ’ XXy ’
X, Xp Xy Xz

SFor an introduction to the terminology used in this sub-section, we refer the reader to first chapters in Jacod
and Shiryaev (2003).
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where X, Xp is a ¢ X ¢ matrix whose (j, )-th component is the approximate covariation between the j-th
and r-th element of D, with X}, X7 defined similarly. In view of the properties of Y(—1)n outlined above
and Assumption S.D.2, X'X is O, (1) as h | 0. The limit matrix is symmetric positive definite where the
only zero elements are in the 2 x (¢ + p) upper right sub-block, and by symmetry in the (¢ + p) x 2 lower
left sub-block. Furthermore, we have

Ykt B e

Xl — Yo <Y(k71)hh) Chh | (S.69)
S h—1 ApDyegn
Sr1 AnZgern

The other statistics are omitted in order to save space. Again the proofs are first given for the case where
the drift processes piz¢, pp, of the semimartingale regressors Z and D are identically zero. In the last
step we extend the results to nonzero pz¢, up . We also start by conditioning on the processes piz, pp ¢
and on all the volatility processes so that they are treated as if they were deterministic. We begin with a
preliminary lemma.

Lemma S.D.10. For 1<i<2,3<j<p+2and~vy >0, E,Et/}fs/hjz,i}z ,E:J,I)UCPO forall N >t >s+v>
s> 0.

Proof. Without loss of generality consider any 3 < 7 < p+ 2 and N > ¢ > s > 0. We have

ZWhi/h kz)z,ih = kt/’g/hJ \/E(AhMg;C), with further E[z,(c}l)z,gl)lﬁ(k vul =0, ’Zk:h 25 )\ < K for some

K by Assumption S.D.2. Thus {zkhz,(fh) , Zrn} is a martingale difference array. Then, for any 7 > 0,

[ )

K, [ %
<SE( Y (A M%) < = hO, (t—s) = 0,
” k="[s/h) N

where the second inequality follows from the Burkholder-Davis-Gundy inequality with parameter r = 2.

This shows that the array { |z,(;,2,z,(fh) 2} is asymptotically negligible. By Lemma 2.2.11 in the Appendix

of Jacod and Protter (2012), we verify the claim for ¢ = 1. For the case i = 2 note that z,(i)z,(cjh) =

(}/(k_l)hh)(AhMé{,l), and recall that 17(;6_1);1 = hl/QY(k_l)h = Op (1). Thus, the same proof remains valid
for the case i = 2. The assertion of the lemma follows. [J

S.D.5.1 Proof of Proposition S.C.1
Proof of part (i) of Proposition S.C.1. Following the same steps that led to (S.12), we can write

Qr (1) = Qr (Ty) = — | Ty = T}| d (1)) + ge (1), for all T), (S.70)
where

(09)" {(24M Z0) — (Z§M Z2) (Z5M Z2) ™ (2,M Zo) } 5,
Ty — T ’

d (Ty) = (S.71)
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and we arbitrarily define d(T3) = (5%)'6% when T, = Tp. Let dp = Tinf|Tb_T0|>TK d (Tp); it is positive
b
and bounded away from zero by Lemma S.D.11 below. Then

P (‘Xb - )\0' > K) = (‘ﬁ, —TI?’ > TK)

<P swp  le@m)> if |T-Td(D)
|T,~T0|>TK |Ty=T)|>TK

<P sup lge (Tp)| > TK inf d (Ty)
p+2<T,<T—p—2 |T,—T0 |>TK
=P (dTl sup ge (T3)| > K) . (S.72)
p+2<T<T—p-2

We can write the first term of g. (T}) as
2(6°) (2)M 22) (230 2) " (230 2) 7 ZoMe. (S.73)

For the stochastic regressors, Theorem S.D.5 implies that for any 3 < j < p+ 2, (Z2¢),, /Vh =0, (1)
and for any 3 <i < g+p+2, (Xe);, /Vh = 0, (1), since these estimates include a positive fraction of
the data. We can use the above expression for X'X to verify that ZyM Z, and Z)M Z, are O, (1). Then,

sup (Z4M Zy) (Z5M Zo) ™' (ZyM Zo) < ZyM Zy = O, (1),
Ty

by Lemma S.D.3. Next, note that the first two elements of the vector X'e and Zje are O, (hl/ 2> [recall
(S.69)]. By Assumption 2.1-(iii) and the inequality

sup

u \(ZQMZ2)*1/2 ZQMeH < sup H (ZQMZQ)*WH sup | ZoMe||,

we have that (ZéMZg)_l/2 ZyMe is O,(h'/?) uniformly in T} since the last g + p (resp., p) elements of
X'e (resp., Zhe) are op (1) locally uniformly in time. Therefore, uniformly over p+2 < T, < T —p — 2,
the overall expression in (S.73) is O,(h'/2). As for the second term of (S.10), Z,Me = O,(h'/?). The first
term in (S.11) is uniformly negligible and so is the last. Therefore, combining these results we can show
that supy, [ge (Tp) | = O,(Vh). Using Lemma S.D.11 below, we have P(d;* SUpy, o<, <7—p—2 19e (T) | >

K) < &, which shows that Xb Lt Ao. O

Lemma S.D.11. Let dp = inf|Tb—T0|>TB Td(Ty). There exists a k > 0 and for every € > 0, there ezists a
b
B < oo such that P(dp > k) <1 —¢.

Proof. Assuming N, < N} and following the same steps as in Lemma S.D.6 (but replacing R by R)

r— XWX
Td(Ty) > T (3%) R'ToAi_;b
b

— (5%)'R’X%BXA (X5X5) " (XhXo) R (5%) .

(X3X2) ™ (X5 %0) R (50)

Under Assumption 2.1-(iii) and in view of (S.68), X\ X is positive definite: for the p x p lower-right
sub-block apply Lemma S.D.3 as in the proof of Lemma S.D.6, whereas for the remaining elements of
X'\ Xa the result follows from the convergence of approximations to Riemann sums. Note that X3 X5 and
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X{Xo are O (1). It follows that

— X\ X
Td(Ty) > (55) B =452

(X5X5) " (X} X0) R6Y > k> 0.

The result follows choosing B > 0 such that P (dp > k) is larger than 1 —e. OJ
Proof of part (ii) of Proposition S.C.1. We introduce again

Dy ={Ty: Nn< N, <N (1-n),

N = Ny| > KT},

and observe that it is enough to show that P(supy,cp, . Qr (Tp) > Qr (1)) <€, or

p ( sup hlg.(T) > inf A1 ‘Tb — Tl?‘ d(Tb)> <e. (S.74)

Ty€Dk 1 TveDk,1

By Lemma S.D.1,

r—; X/ _
L d(T) =t (62) R';Z;A_)%) (X5X5) ™" (X Xo) R6Y.
For the (q + p) x (¢ + p) lower right sub-block of X\ X the arguments of Proposition 3.2 apply: (h(Tp —
T,)) ! [XAXAlL, (g49) % (g+p)} 18 bounded away from zero for all Ty, € Dk 1 by choosing K large enough
(recall |T) — Tp| > K), where [A] {,ixj} is the 7 x j lower right sub-block of A. Furthermore, this approx-
imation is uniform in 7, by Assumption 3.1. It remains to deal with the upper left sub-block of X\ Xa.
Consider its (1, 1)-th element. It is given by ZginJrl(hl/Q)Q. Thus (h(TP — Tp)) ™ ZfinH(hlﬂ)z > 0.
The same argument applies to the (2, 2)-th element of the upper left sub-block of X\ Xa. The latter re-
sults imply that inf7,ep , T'd (1p) is bounded away from zero. It remains to show that supg, cp, . (h|Th —
TP)"1ge (T) is small when T is large. Recall that the terms Zy and Zj involve a positive fraction N7
of the data. We can apply Lemma S.D.3 to those elements which involve the stochastic regressors only,
whereas the other terms are dealt with directly using the definition of X'e in (S.69). Consider the first
term of g (T). Using the same steps which led to (S.19), we have

/ _ /
‘2(5%) (ZM Z2) (Z3M Zo) ™" ZoMe — 2 (8%) (ZyMe)

- ‘ (3%) ZuMe . (S.75)

(CACRACATZARIPRTS

We can apply Lemma S.D.3 to the terms that do not involve |V, — Nl? | but only stochastic regressors.
Next consider the first term of

(h (Tz? - Tb))—l (5%)' (Z\MZ3) = W

0\’ Z; XA Iy —1 7
- (5%) <h (Tb%—Tb) (X'X) XZQ>.

Applying the same manipulations as those used above for the p x p lower right sub-block of Z)\ Za, we
have (h(TY — Tp)) ' [ZAZAl(., pxpt = Op (1), since there are T;) — T}, summands whose conditional first
moments are each O (h). The O, (1) result is uniform by Assumption 3.1. The same argument holds for

the corresponding sub-block of Z\ Xa/(h(T) — T3)). Hence, as h | 0 the second term above is O, (1).
Next, consider the upper left 2 x 2 block of Z\ Zn (the same argument holds true for Z\ Xa). Note
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that the predictable variable Y{;_1y, in the (2, 2)-th element can be treated as locally constant after
multiplying by h'/? (recall h!/? Yi—in = Y(k pn = Op (1) by Assumption S.D.2),

70 , I , 70
> (Y(k—l)hh> = > (Y(k—1)hh1/2) <C Y h
k=Ty+1 k=Ty+1 k=Tp+1

where C' = supy, DN/&_I),J is a fixed constant given the localization in Assumption S.D.2. Thus, when
multiplied by (h(Tp — Tp))~!, the (2, 2)-th element of Z)\ Za is O, (1). The same reasoning can be
applied to the corresponding (1, 1)-th element. Next, let us consider the cross-products between the
semimartingale regressors and the predictable regressors. Consider any 3 < j < p+ 2,

TO
1 - o 1/2) ()
770 Z Zkhzkh = 0 Z Yik-1)nh Zkh
h (T k Ty+1 h(T) = Th) k=T,+1 ( )
TO .
L E W
= 70 Z Yik—1)n :
Ly =T 2 vh

Since z](fh)/\/ﬁ is i.n.d. with zero mean and finite variance and f/(k—l)h is Op (1) by Assumption S.D.2,
Assumption 3.1 implies that we can find a K large enough such that the right hand side is O, (1) uniformly
in Tp. The same argument applies to (Z%\ Za)1,j, 3 < j < p+2. This shows that the term (Z\ Xa/(h(TP —
Ty)) (X'X) ™! X' Zy is bounded and so is ZNXn/(MTY — Tp)) using the same reasoning. Thus, (h(T) —
Ty))~' (6%) (Z\MZs) is O, (1). By the same arguments as before we can use Theorem S.D.5 to show
that the second term of (S.75) is Op,(h'/?) when multiplied by (h(T — T3))~" since the last term involves
a positive fraction of the data. Now, expand the (p + 2)—dimensional vector Z\ Me as follows

Z’AMe
- Zkh€kh
W (10— 1) h(TO k;l
. S zenTh | (X'X) 7 (Xe)
h(To ) (k ;H kh kh) ) (X'e)

The arguments for the last p elements are the same as above and yield [recall (S.20)]

[Zp\Me].
o (ATI? fTZ’)} =0, (K1) = 0,(1) 0, (1'/?),

where we recall that by Assumption 2.2 X, NO = 0. Note that the convergence is uniform over 7; by
Lemma S.D.2. We now consider the first two elements of Z/, e:

TbO TbO TO
Z Z;(jb)ekh = Z h1/2y(k yrh 120 1< A Z ‘Y(k nuh 1V2¢, .
k=T, +1 k=T, +1 k=T,+1

for some positive A < oo. Noting that eg;, /v/h ~ i.n.d..# (0, O'g,k_l), we have

()", 35 b (a2 -m) " 3 ewsn)

k= Tb+1 kZTb-f—].
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where C' = sup,, |§7(k,1)h| is finite by Assumption S.D.2. Choose K large enough such that the probability
that the right-hand side is larger than B/3N is less than €. For the first element of Z/\ e the argument is

P((h(Tb— )) Z Zkhekh>£v)§57

k=T,+1

the same and thus

when K is large. For the last product in the second term of Z\ Me/h the argument is easier. This
component includes a positive fraction of data and thus

T T
Z x,(elh)ekh = Z h1/26kh = h1/20p (1) y (876)
k=1 k=1

ucp

using the result ZL /h] erh fo Oc,sdWe s. A similar argument applies to :U,(Ch) exn by using in addition

the localization Assumptlon S.D.2. Combining the above derivations, we have

g (Th) = ! ) (5%)'22@ +o,(1). (8.77)

h(T) —Ty,) h(TO =T,

In order to prove

P| sup (h (Tl?—Tb)) - e (Ty) > inf K7 'd(Ty) | <e,
T,€Dg T TyeDg T

we can use (S.77). To this end, we shall find a K > 0, such that

70
2 -1 & B
P sup ,ugﬁ (TéJ — Tb) Z zkh Ckh| > 37 (S5.78)
T,<TP— % k=Ty+1

| & B
- €Lh 9
<P sup (TP — Ty —| > <.
(Tbng?—ﬁ ( ) k:%,:ﬂ Vh| " 6l N )3

Recalling that ey, /hY/2 ~ A4(0, O'ikil), the Hajek-Réiny inequality yields
TO

k=T,+1

6|u9 N B?  KN-U

-1 B 02 N2 ]
pP sup (Té) — Tb) < A36 (115)
T<T)—%

We can choose K sufficiently large such that the right-hand side is less than £/3. The same bound holds
for the second element of Z\e. Next, by equation (S.22),

1 / i B
€
P sup —112(6% (Zhe],. <=
since for each j = 3,..., p, {z,(jh) ekn/h} is in.d. with finite variance, and thus the result is implied by the

H&jek-Réiny inequality for large K. Using the latter results into (S.77), we have

> B <
— 3
N )

0
Tb

2(5%)/ > zZknern

k)ZTb+1

1
P su —_—
(T <T0p K h( Tb)
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which verifies (S.74) and thus proves our claim. [J

S.D.5.2 Proof of Theorem S.C.1

Part (i)-(ii) follows the same steps as in the proof of Proposition 4.1 part (i)-(ii) but using the results
developed throughout the proof of part (i)-(ii) of Proposition S.C.1. As for part (iii), we begin with the
following lemma, where again 1, = h'~*. Without loss of generality we set B = 1 in Assumption 4.1.

Lemma S.D.12. Under Assumption 4.2 and S.D.2, uniformly in Ty,

(QT (Ty) — Qr (Té))) [Un = —0n (ZAZA[n) On £ 20, (Z7€/1n)
+0, (h3/4/\1—5/2) .

Proof. By the definition of Qr (T,) — Qr () and Lemma S.D.9,

Qr (Tp) — Qr (Té)> (S.79)
= — 0, {ZAMZa + (ZAM Z5) (Z3M 2Z5) ™ (Z5M Z) } 61
+ ge (Tv, 6n) -
We can expand the first term of (S.79) as follows
5, ZNMZASy = 8, Z\Z b — 8, Adh, (S.80)

where A = Z)\ X (X'X)" ' X'Zx. We show that 0, Ady, is uniformly of higher order than &, Z)\ ZA0p.
The cross-products between the semimartingale and the predictable regressors (i.e., the p x 2 lower-left
sub-block of Z\ X') are op, (1), as can be easily verified. Lemma S.D.10 provides the formal statement of
the result for Z)\ Zx. Hence, the result carries over to Z\ X with no changes and by symmetry also to is
the 2 x p upper-right block. This allows us to treat the 2 x 2 upper-left block and the p x p lower-right
block of elements, such as those in A separately. By Lemma S.D.3, (X’X)_1 = O, (1). Using Proposition
4.1-(ii), we let Ny, — N,? = K,. By the Burkholder-Davis-Gundy inequality, we have standard estimates
for local volatility so that

(4,4) (i) 1/2
(500 7) 85 )
with 3 <@ <p+2and 3 < j < ¢+ p+ 2 which in turn implies [Z) Xalf. pxpy = Op(1/(R(T}) — Tp))).

The same bound applies to the corresponding blocks of Z)\ Za and X\ Za. Now we focus on the (2, 2)-th
element of A. First notice that

Ty
(Z/AX)Q,QZ Z kh I(fh)_ Z (Yk Dh )
k=Tp+1 k=Tp+1

By a localization argument (cf. Assumption S.D.2), Y/Uc—l)h is bounded. Then, since the number of
summands grows at a rate 7", we have (Z)\ X )on = Op(K h'~%). The same proof can be used for (Z4 X), ,,

which gives (Z4X), , = Op(Kh'™"). Thus, in view of (S.81), we conclude that (S.80) when divided by
¥y, is such that

Sy ZNM Z A8y ) = 64 ZNZadh)n — Oy ZaX (X'X) ™" X' Zabh/0n
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=yt (6°) ZZa0° — vy 0120, (207) (8.81)
For the second term of (S.79), we have
/ _
W2 (8°) {(ZaM2) (25M 25) 7 (Z3M Z) } 6° (3.82)
= 0 B2 80> Op (1n) Op (1) Op (¥n) < Ky 1120, (n201)

uniformly in 7}, which follows from applying the same reasoning used for Z\ (I — M) Z above to each
of these three elements. Finally, consider the stochastic term g (75, 5). We have

ge (Ty, 61) = 200, (ZAM Zo) (Z5M Z3) ™" ZoMe — 26, (Zh Me) (S.83)
€M Zy (ZyMZy) ™ ZoMe — & M Zo (Z)M Zo) " Z Me.

0 0
Recall (S.69), and ZzszbH TEnern = h~1/4 ZEEZH Trhern. Introduce the following decomposition,

Ty -T") , T)+|T") ) T )
(Xe)yy= Y mgem+h ™ 3 a@aw+ Y aiew.
k=1 k=T)—|T*|+1 k=TQ2+|T*|+1

where €y, ~ in.d. 40, Ug’kilh). The first and third terms are O,(h'/?) in view of (S.76). The term

. . . 374 —TPH|TR)
in the middle is h3/ Zkb:Tl?—LT“J-H

Y(x—1)n is bounded by the localization procedure,

17(k—1) nh~1/2€,;,, which involves approximately 27" summands. Since

/ Tn/2 TEJF\_TNJ gkh / /
3/4 Z }7 7:h34T;i20 (1)
K/2 (k=1)h p ’
T k=TQ0—|T"] ‘/E
or
To+|T%|
VST aBe, = kA0, (1).
k=TQ0—|T*]

This implies that (X'e), ; is O,(h1/?"3/4=%/2) " The same observation holds for (X’ e);1 - Therefore, one
follows the same steps as in the concluding part of the proof of Lemma 4.1 [cf. equation (S.54) and the
derivations thereafter]. That is, for the first two terms of ge(Ty, d5), using Z\M Zy = ZyM Zy + Z)\ M Z>,
we have

201/ (8°) (Z)M 22) (23M 2) 7 ZoMe — 2h1/* (8°) (ZgMe)
= 21!/ (8°) 7/ sMe 204 (8°) 2/ AM 25 (230 2) ™ ZMe. (S.84)
The last term above when multiplied by w,:l is such that
2l (8°) 2/ aM 2, (240 22) 7 ZoMe = ||8°] 0, (1) 0, (n45/471/2),
where we have used the fact that Z\ M Z5 /v, = O (1). For the first term of (S.84),
2 1/4 (50)' 7' xMe/ i,
— op /4 (50)/ 7' ety — 2hM (50)’ Z'AX (X'X) X e/,

S-41



=21/ (8°) 7' s — 2 (69) 0, (1) O (WV9/4=1/2).

As in the proof of Lemma 4.1, we can now use part (i) of the theorem so that the difference between the
terms on the second line of ge (T}, d5) is negligible. That is, we can find a ¢p sufficiently small such that,

Ut M2y (23M Z) ™" ZoMe — ¢! M Zy (ZM Z) ™" ZgMe| = o, (crh) .
This leads to

ge (Ty, On) Jibn, = 2014 (60)/ 7' nefin+ O, (h3/4/\171€/2)
+ |8 0p (n¥44) + 0y (exh)

for a sufficiently small ¢p. This together with (S.81) and (S.82) yields,

oy (QT (Ty) — Qr (ﬂ?)) = —0n (ZAZA/Yn) On
20, (Zhe/tn) + Op (W17 10, (112),
when T is large, where cp is a sufficiently small number. This concludes the proof. [
Proof of part (iii) of Theorem S.C.1. We proceed as in the proof of Theorem 4.1 and, hence, some

details are omitted. We again change the time scale s + t = 1/},:15 on D (C) and observe that the
re-parameterization 6 and o, ; does not alter the result of Lemma S.D.12. In addition, we have now,

1 ~1/2
dzy) = v, 1 (ds)'V? = (ds)'?,
dz5) =, Yo ds = 0y PV (ds)? = Vi (ds)?,
where the first equality in the second term above follows from 57(,6_1);1 =hp/ QY(k_l)h on the old time scale.
N} (v) varies on the time horizon [N) —|v|, N + |v|] as implied by D* (C), as defined in Section 4. Again,

in order to avoid clutter, we suppress the subscript ¢,. We then have equation (S.60)-(S.61). Consider
T, < TP (ie., v <0). By Lemma S.D.12, there exists a T such that for all T > T,

Qr (0%) = —h™Y258, Z\ ZAby + h™1/228), Zlhe + 0, (1)

geEs
:—(5) Z zkhzfgh 50

k=T,+1

TO
+ 2 ((50)/ (h_l/Q Zb zkhgkh) —+ Op (1) s

kZTb+1

and note that this relationship corresponds to (S.62). As in the proof of Theorem 4.1 it is convenient to
associate to the continuous time index t in D*, a corresponding D*-specific index t,. We then define the
following functions which belong to D (D*, R),

7y 7y
I D D Jen (V)2 > zpnrn,
k:Tb(’U)-I—l k:Tb(U)-‘rl

for (Tp (v) +1)h < t, < (Tp (v) +2) h. Recall that the lower limit of the summation is 7} (v) + 1 =
T? + [v/h] (v < 0) and thus the number of observations in each sum increases at rate 1/h. We first note
that the partial sums of cross-products between the predictable and stochastic semimartingale regressors
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is null because the drift processes are of higher order (recall Lemma S.D.10). Given the previous lemma
we can decompose Qp (0, v) as follows,

Qr (0, v) = (39) Rup () 03+ (65) Ra (v) 6% (.85)

T
+ 2 (5())/ (\}E Z Zkhgkh) ,

kZTb+1

where

0
Tb

Ry (v) £ Z

k’ZTb (’U)+1

) 2,h \V) = Alf. ’
Yo-1)nh?/? (Y(kfl)hh) AT pxr}

and 0° has been partitioned accordingly; that is, 52 = (,ug, ag)/ is the vector of parameters associated with
the predictable regressors whereas 5% is the vector of parameters associated with the stochastic martingale
regressors in Z. By standard results for convergence of Riemann sums,

0 Ny 5
Nb _Nb beDJrv Y:qu

!/ c.D. /
(89) Run @05 "5 (50) | no - NS (S.86)
le?—&—v YSdS le?—&—v Y; ds
Next, since Zt(j ) (j =3,..., p+2) is a continuous Itd semimartingale, we have by Theorem 3.3.1 in Jacod
and Protter (2012),
u.c.p.
Rop(v) = (Za, Za) (v). (S.87)

We now turn to examine the asymptotic behavior of the second term in (S.85) on D*. We use the following
steps. First, we present a stable central limit theorem for each component of Z)\e. Second, we show the
joint convergence stably in law to a continuous Gaussian process, and finally we verify tightness of the
sequence of processes, which in turn yields the stable convergence under the uniform metric. We begin
with the second element of Z'\e,

TP 0
1 - 0,(2)~ 1 - 0 ~
— > amrem=— > a3 (Ye-1nh)ewm
vh k=T, (v)+1 vh k=Ty(v)+1 ( )

and using ?(k—l)h, = hl/QY(k_l)h [recall that Yf(k—l)h is bounded by the localization Assumption S.D.2] we

then have
. 1y
7h > o (Y(k—l)hh) Gh= Y, o (Y(k—l)h> €kh
kZTb(U)+1 k‘ZTb(’U)+1
ne Ny N
=P / Y, dW, s,
Nl?—i-v

which follows from the convergence of Riemann approximations for stochastic integrals [cf. Proposition
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2.2.8 in Jacod and Protter (2012)]. For the first component, the argument is similar:

T2 0
1 : 0. uep [0
ﬁ Z ,u(gzkh €Lh :> o IU/(;dW&s. (888)
k=T (v)+ Ny +v

Next, we consider the p-dimensional lower subvector of Z)\ e, which can be written as

2(s9) (\lf Z zkhékh) , (S.89)

k=T (v

/
where we have partitioned zx, as zxp = [hl/ 2 Yie—1nh 5,;4 . Then, note that the small-dispersion
asymptotic re-parametrization implies that Zgperp corresponds to zpp€rp from Theorem 4.1. Hence, we
shall apply the same arguments as in the proof of Theorem 4.1 since (S.89) is simply 2 (6%), times

0
Wi, (v) = h™12 ], (v), where J.p (v) & Zzszb(vH»l Zgne with (T, (v) +1)h < t, < (Tp (v) +2)h. By

Theorem 5.4.2 in Jacod and Protter (2012), #4 (v) =% (v). Since the convergence of the drift
processes Ry p, (v) and Ry, (v) occur in probability locally uniformly in time while #}, (v) converges stably
in law to a continuous limit process, we have for each (6, -) a stable convergence in law under the uniform
metric. This is a consequence of the property of stable convergence in law [cf. section VIIL.5c¢ in Jacod
and Shiryaev (2003)]. Since the case v > 0 is analogous, this proves the finite-dimensional convergence
of the process Qp (6, -), for each 6. It remains to verify stochastic equicontinuity. As for the terms in

i o
or (L ()

Ry, (v), we can decompose

=Ty (v)+1
as
QG,T (‘97 1)) + Q?,T (9’ U) )
where
Qg1 (0, v) (Zsz) and Q71 (6, v) (ZC 2hk>
with
9 kh N kh N _
2 (22) / Y2ds | — 2V / Yoy — Y ) ds
2,h.k ( k:h) _— (k—1)h " ( (k—1)h )
+ 2E Yv(k—l)h ()/(k‘—l)h -h — / }/sd8> ‘ ﬁ(k‘—l)h‘|
(k—1)h
£ Link + Lop,
and
Gk = 2Y- 1 (Y nynh — / Yids
(k—1)h

(k—1)h
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Then, we have the following decomposition for
HC kN A A (% o)’ 0
Q7 (07) 2 Qr (0) + (0°) A(v) ",

(if v < 0 and defined analogously for v > 0),

where Q. (0, v), r = 1,..., 4, are defined in (5.63) and Q51 (6, v) £ (15) (g Cik)s Qsr (0, v) £
(16)” (W2 &unk)y Qo (6, v) 2 (a5)2(hY2 Ty Lo n) where Cupp 2 (202 — h, gy 2 B2,
~ 0
and &o 1 £ (Y(k_l)hhl/Q)ékh. Moreover, recall that >-, stands for Z%@)H for Ny (v) € D*(C). Let us
consider Qg 7 (0, v) first. For s € [(k — 1) h, kh], by the Burkhélder-Davis-Gundy inequality
‘E [?(kq)h (ff(kfl)h - f/s> ‘y(kfl)h” < Kh,

from which we can deduce that, using a maximal inequality for any r > 1,

i )
(0,v)

By a Taylor series expansion for the mapping f : y — y2, and s € [(k — 1) h, kh],

(as)? > Lok

1/r 1/r
<K, <sup (os)?" Zh’") = Kb (S.90)
k

(9,’0) k

E ’}7(%;—1)}1 - ?52 — 217(k71)h (57(]6,1)]1 - ?;) < KE [(Yf(kl)h . }{9)2] < Kh,

where the second inequality follows from the Burkhélder-Davis-Gundy inequality. Thus, using a maximal
inequality as in (S.90), we have for r > 1
ril1/r
r—1
> ] =K.h+ . (S.91)

[IE (sup
(6,v)

(S.90) and (S.91) imply that Qg7 (-, ) is stochastically equicontinuous. Next, note that Q7 (6, v) is
a sum of martingale differences times h'/? (recall the definition of ApVi = hY2A,Vi(v, 071, 072)).
Therefore by Assumption S.D.2, for any 0 < s <t < N, V; — Vi = O, (1) uniformly and therefore,

(as)? > Ling

k

su
(0,0)

Q7.1 (0, U)‘ < KO, (h1/2> . (S.92)

Given (5.86) and (S.90)-(S.92), we deduce that

sup { Qo (0, 0)| + Q7. (6, v)|} = 0, (1).

(0,v)

As for the term involving Ry (v), it is easy to see that sup(y ) |Q (0, v)| — 0. Next, we can use some
of the results in the proof of Theorem 4.1. In particular, the asymptotic stochastic equicontinuity of the
sequence of processes {2 (dz) #, (v)} follows from the same property as those applied to {@3;[ 0, v)}
and {Q4 7 (0, v)}. The stochastic equicontinuity of

(62) (Ro (0, v) = (Za, Za) (v)) 3z,
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also follows from the same proof. Recall Q; 1 (0, v) + Qo1 (6, v) as defined in (S.63). Thus, stochastic
equicontinuity follows from (S.65) and the equation right before that. Next, let us consider @93 (0, v). We
use the alternative definition (ii) of stochastic equicontinuity in Andrews (1994). Consider any sequence
{(6, v)} and {(0, ¥)} (we omit the dependence on h for simplicity). Assume N, < N < N, (the other
cases can be proven similarly) and let Ndy, £ N, — Ny. Then,

Ty Tp(9)

‘@Q,T (6, v) = Qg r (97 5)’ = | Z }N/(k—l)hgkh — Qg Z 17(k—1)h€1m
k=Ty(v)+1 k=TY

0
Tb

> Yo 1nlrn
k:Tb(v)—l-l

IN

|ovs| (S.93)

Ty ()

+lasl| Y Yo 1ynérn| -
k=T

The second term is such that, by the Burkholder-Davis-Gundy inequality for any r > 1,

T

T2+ |Nu/h)
E| sup Y 1vn€knl | Fro
S g;o (k—1)h | N
b
. TO+(Ndn/h)  on o r/2
< K, (Nd)"*E N / V) ds| | Fo| < Kody/”.
h b0 (k—1)h

By the law of iterated expectations, and using the property that dp | 0 in probability, we can find a T’
large enough such that for any B > 0

0 r 1/r
T,)+[Nu/h|
E| sup S Yoo unér| | Fao < K.d)*P (Ndj, > B) — 0.
0Susdy | 7o b

The argument for the first term in (S.93) is analogous. By Markov’s inequality and combining the above
steps, we have that for any € > 0 and 1 > 0 there exists some T such that for 7> T,

P (‘QQ,T (0, v) = Qg r (é, 17)’ > 77) <e.

Thus, the sequence {Qg,T (+, )} is stochastically equicontinuous. Noting that the same proof can be
repeated for Qg (-, -), we conclude that the sequence of processes {Q% (6*), T > 1} in (S.85) is stochas-
tically equicontinuous. Furthermore, by (S.86) and (S.87) we obtain,

() R (0. 0) 8+ (53) (Ro (6, 0)) 8% "2 (8°) A ).

This suffices to guarantee the ¥-stable convergence in law of the process {Qr (-, -), T > 1} towards a
process # (-) with drift A (-) which, conditional on ¢, is a two-sided Gaussian martingale process with
covariance matrix given in (S.7). By definition, D* (C') is compact and Th(XgL7r — o) = O, (1), which
together with the fact that the limit process is a continuous Gaussian process enable one to deduce the
main assertion from the continuous mapping theorem for the argmax functional. [
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S.D.5.3 Proof of Proposition S.C.2

We begin with a few lemmas. Let f”t* = }7“ /hjh- The first result states that the observed process {2*}

converges to the non-stochastic process {Y;’} defined in (S.5) as h | 0. Assumption S.D.2 is maintained
throughout and the constant K > 0 may vary from line to line.

Lemma S.D.13. As h | 0, supy<;<py Y =Y =0, (1).

Proof. Let us introduce a parameter 7 with the property ~; | 0 and h1/2/7h — B where B < co. By
construction, for ¢ < Ng,

Vi v0= [ ad (Voo 0 ds B () D
’ , ot t
+ B’Yh (5%,1) /0 dZs + B’Vh/o Ue,dee,s'

We can use Cauchy-Schwarz’s inequality, so that
! v 90
/0 or (Vs = V) ds

n 2
8% /0 dZ,

% 99f <2k 2
| =

2

+ (‘u“’Dt‘z + + )(thf

t
/ Oe,sAWe s
0

2 fti. 2 2
< 2KtHa?’ / Y, — Y0 ds + ( sup ’VO'DS
0 0<s<t
t 2 S 2 5
+ sup 5%’71/ dZs| + sup / OeudWeu )(nyh) }
0<s<t 0 0<s<t 1J0

By Gronwall’s inequality,

\ 0 2 2 ! 2
‘Y}—Yt ’ < 2(Byp)* Cexp / 2K“tds
0
<2 (B’yh)2 C exp (2K2t2) ,

where C' < oo is a bound on the sum of the supremum terms in the last equation above. The bound
follows from Assumption S.D.2. Then,

2u<pN ‘f/t — f’to‘ < K\/§B'yh exp (KQNQ) — 0,
0<t<

as h | 0 (and so vy, | 0). The assertion then follows from [t/h|h — t as h | 0. The case with ¢t > N is
proved in a similar fashion. [J

0 ~ 0 ~
Lemma S.D.14. As h | 0, uniformly in (u1, a1), (N/T') Zzbzl(ﬂl + a1Y(p—1)n) 5 ngb (11 + a1 YQ)ds.

Proof. Note that

TO
N b N NXo .
sup (o kz::l (m + aly(k—l)h) - /0 (m + aﬁ;’)‘
NO _ NO _
= sup / ’ (ul + ale*) ds — / ' (,ul + alY;O) ds
pse1 | Jo 0
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Ny
< sup/
a1 0

which goes to zero as h | 0 by Lemma S.D.13 (recall h'/?/~;, — B) and by Assumption S.D.2. [

YO

p» (Vn) sup |aq],
o1

Lemma S.D.15. For each 3 < j <p+2 and each 0, as h | 0,

[N3/h]

_ . . NXo _ )
S (i or¥iun) sz B [ (4 ) a2,
k=1
Proof. Note that
| N9 /h] , , ND
> (m+arYa) 548027 = / (11 + a1 ¥y) dz.
k=1 0

By Markov’s inequality and the dominated convergence theorem, for every € > 0 and every n > O:

o )
a2\ L2
(SUPO<8<N Z$=1< (st)) > ) Ny T <on2 12
< | [69) /O E[(YS*_YSO) }ds :

N? . .
| (¥ - ¥0) 6z
0

Ui

which goes to zero as h | 0 in view of Lemma S.D.13 and Assumption S.D.2. [J

Lemma S.D.16. As h | 0, uniformly in p1, a1,

0
Zb (Ml + a1 Y 1y ) (Yfkh — Y1y — (M? + a(1)37(k—1)h> h) Lo

Proof. By definition [recall the notation in (S.4)],

oo Tcn = [ (o) s AT (0 5 6%).
Then,
T
> (Ml + 04157(k—1)h) (f/kh — Y 1yn — (M? + a(l)?(k—l)h) h)
k=1
T kh N - -
= Z / (Ml + 041Y(k—1)h) (M? + oY, — (M? + O‘(I)Y(k—l)h>)
k=1 (k—=1)h
T, rkh _ -
+ Z/ (Ml + Oély(k_l)h) ApVi (Voa 071, 5%,2)
k=1 (k=1)h

0
= [ (o T o (7~ T )

Ny .
+ B%/ (/ﬂ + 041Y8*> dVs.
0
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For the first term on the right-hand side of the last equation

Ny . L
[ o) (0 (52

0

[ g vt (T30 s

0 Ny
< ‘al‘ K sup ds |,
0  0<s<Ny

which is o, (1) as h | 0 from Lemma S.D.13 and Assumption S.D.2. Next, consider the vector of regressors
Z, and note that for any 3 < j <p+ 2,

sup
p1,a1

<od]

}/;_}/;0 }/50_)/3*

+ sup
0<s<Np

Ny . .
By, sup / (m + ale*) dzy
H1,01 0
N _ p ]
< By, sup /o (m + oz1YS*) > U(Z]”L:)de) :
1,1

r=1
Let NO »
L — . A b B f/* (j’r)dW(r)
R],h = R],h (Nl, 041) = Yn (M1 + oY Z 075 zZ >

0 r=1

(we index R; by h because }75* depends on h). Then, we want to show that, for every ¢ > 0 and K > 0,

P (sup |R;n (p1, 1) > K) <e. (S5.94)

H1,01

In view of Chebyshev’s inequality and the Itd’s isometry,
2
B 5 2 Nl?
PRl > K) < (T2) B { | @ ] |
0

p . B 2 pNY ~
s 35 08 (5 el

0<s<N 1,

<

2
ds} ,

so that by the boundness of the processes (cf. Assumption S.D.2) and the compactness of Oy, we have
for some A < oo,

P(|Rjn| > K) <A

u i, 2 B’Yh 2
O;SET,; (O'(Z{S)) 1 <K) — 0, (S.95)
since 7y, J 0. This demonstrates pointwise convergence. It remains to show the stochastic equicontinuity
of the sequence of processes {R; (-)}. Choose 2m > p and note that standard estimates for continuous
It6 semimartingales result in E[|R;,|*™] < K which follows using the same steps that led to (S.95) with
the Burkholder-Davis-Gundy inequality in place of the It6’s isometry. Let g(}N/S*, 5) £ g+ al,lffs*,
51 = (p11,01,1) and 51 = (,u2,1,042,1)/. For any 51, 52, first use the Burkholder-Davis-Gundy inequality
to yield,
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HORA0Y

(By)™™ m[ sup Z (UZS ) ‘|m

0<s<N .|

([ ) o000 |
< () i | s (02|

0<S<N7” 1

o [</0N£ <(M172 —p11) + (12 —a11) 573*)2 ds) m]

p m
< (Bw)™™" K l sup 3 (U(ng))Q]

0<s<N =]

x B K/ONS (12 — p1a) + (@12 — a11) C)? ds) m]
NO -
(/ (2 (12 — pi1)* + 2C (ars — a171)2> ds) ]
0
< 2™ (By)*" K Hz (92 _ 91) H 2m </0Nb dg) o0

4 2™ (B’}/h)QmK (51, 9~2, m, C) R

< (Byp)*™ K E

where C' = sup;>g Y|, K(61, 62, m, C) is some constant that depends on its arguments and we have
used the fact that (a + b)2 < 2a? + 2b%. Thus, since 73, | 0, the mapping R; 1, (+) satisfies a Lipschitz-type
condition [cf. Section 2 in Andrews (1992)]. This is sufficient for the asymptotic stochastic equicontiuity
of {R;j (-)}. Therefore, using Theorem 20 in Appendix I of Ibragimov and Has'minskii (1981), (S.95) and
(S.96) yield (S.94). Since the same result can be shown to remain valid for each term in the stochastic
element ApVj(v, 071, 672), this establishes the claim. O

Proof of Proposition S.C.2. To avoid clutter, we prove the case for which the true parameters are (19, a(f),.
The extension to parameters being local-to-zero is straightforward. The least-squares estimates of (u?, 04(1))/
are given by,

T
ANy =Yg, = Yo—ah ) Yie-nn (S.97)
k=1

E;‘:b 1 (ff"“h B 17(’@—%) Yie1yn
2
hz k Dh (hzk Yo 1)h>
]\7_1 (Y/A B }70) thil 37(1%1);1

Pa— 5.
hzk ! (k Lk - N (hZfil Y(kl)h)

(S.98)

g>

S-50



Then, assuming fb < Té),

~

(mh + Y ynh + ARV, k) (k—1)h

oy =
hz;‘: 1 Y% Hh 1;1 (h Zt}?:l }7(k—1)h>2
<M1 +afN, ! Zk Yo nynh + Ny By, (VA - Vo)) hz,f’;l Y- 1)h
PER T~ N (WD i)
+o0p (1),
and thus
G — Zfil (H?h + Y 1ynh + Ah%) Y- 1yn

~ 2
YR V= Ny (hZfimk—nh)

~ TO ~
(1 + Q0N S, Vil 5 B (Vg = 0) ) L, Fino

— — 2
T, < - T, <
h> 2y Y(?c—l)h - N, ! (h P Y(kl)h>

T N
X h Z Yi-1)n

Zk" i1 (M(l)h + Y 1ynh + Ath) Y- 1n
~ p
_ P
hzkbzl Yv(%cfl)h - N, ! (h 2okl Y(k—l)h)
TO ~
(Zkb T+t htaly b:A , Yoe—vnh + B (VNE - Vﬁb)>
+ )
hz k Dh (hzk = 1)h>
7,
xh Y Yy
k:Z',ﬁ,—i—l

By part (ii) of Theorem S.C.1, N — Ny = Op(h'~%), and thus it is easy to see that the third and fourth
terms converge to zero in probability at a rate slower than h'~*. For the first and second terms, recalling
that Ahf/h,k = hl/ 2AV}, ) from (S.4), we have by ordinary convergence of approximations to Riemann
sums, Lemma S.D.14 and the continuity of probability limits,

T Ty P N?
QIZYk 1)hh—>a1/ Ysds, Z,u(l)h—>,u(1)/0 ds,
k=1

and by Lemma S.D.15, Zk = 1)hAth £o. Thus, we deduce that

a1 =al + 0, (By). (S.99)
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Using (S.99) into (S.97),

~

Ty
Ny =Yg — Yo - afh > Y1y — Op (Byn),

k=1
- Yﬁb —Yo - a(l]h Z Y(k—l)h - O‘(l)h Z Y(k_1)h —o0p(1).
k=1 k=Tp41

By part (ii) of Theorem S.C.1, the number of terms in the second sum above increases at rate 7" and
0 ~
thus, a¥h ZZ”_ it Yo—)n =K Op(hl_”), where we have also used standard estimates for the drift arising

from the Burkholder-Davis-Gundy inequality. This gives
PO . Ny
Ny =Yy = Yo —af [ Vids — af0, (h'™%) = 0, (1).
0

Noting that

~ ~ b ~
Vyo — Yo = Ny +af | Vids + 0, (Byn) (Vo — Vo) ,

0
we have fiy N = u{ NP + O, (Bvp) (VNE — W), which yields
fit = p§ + Op (Bn) (S.100)

Thus, as h | 0, fi; is consistent for u. The case where fb > T, ,9 can be treated in the same fashion
and is omitted. The consistency proof for (fiz, di2)’ is analogous and also omitted. The second step is to
construct the least-squares residuals and scaling them up. The residuals are constructed as follows,

h—l/2
Ukh = h—1/2

where #y,) = h and ) = Y{;_1y,h. This yields, for k < T < T,

AYi — iy — @iz ), k<T

ARYy, — ﬁﬁ;(clh) - @2?522}3 . k>Ty,

U = h™ 12 (:U’(l]h + Y 1yph + BynApVi — fith — alf/(k—l)hh> ;
and using (S.99) and (S.100),

Ukp = hil/Q(M(l)h + a?zk—l)hh + BypARVy — ,u?h
0, (1) ~ ¥t 0, (1)
= h™Y2ByALV: — O, (B). (S.101)

Similarly, for 7Y < T, < k,
akh = h_l/QB’yhAth — Op (h) N (8.102)
whereas for Tj, < k < 1P,

g = h™ 2 (pdh + oY _1yph + BynApVi — pdh
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0, (%) - iy 0, (1)
=h71/? (—Mgh — oY 1yph + By ApVi — Oy (hg/Q))
= —u§h'? — oYy _1yph? + KV 2By ARV — Oy () (S.103)
Next, note that T 0pl/2 < KRp1/2=% and T %Y, hl/2 < Kh'/27% since by Theorem
; Zk:TbH Hs < Zk:TbH §Y(k—1)h < N

S.C.1-(ii) there are T" terms in each sum. Moreover, recall that ey, = Ape; ~ A7(0, ngk_lh) and thus’

7y Ty
Z ekl = \/E Z h_l/Qekh = h1/2_"£0p (1).
k=Tp+1 k=Tp+1

0
Therefore, Z:b o1 Upp = Kop(hl/Q_“). Since k € (0, 1/2), this shows that the residuals 4, from equa-
=4p
tion (S.103) are asymptotically negligible. That is, asymptotically the estimator of ((83)’, (6%,)", (6%4)")’
minimizes (assuming 7T}, < 1?),

T, T 9
S (n — T4nBs)* + Y (akh — TjpBs — 56,kh55> +op (1),
k=1 k=TQ+1

where X = [)~( M), po = [M? af (Bg)/},, and Zp and 82 are partitioned accordingly. The subscript S
indicates that these are the parameters of the stochastic semimartingale regressors. This is exactly the
same regression model as in Proposition 3.3. Hence, the consistency result for the slope coefficients of
the semimartingale regressors follows from the same proof. The following regression model estimated by
least-squares provides consistent estimates for ﬁg and 5%: U=X Bg + Zogg + residuals, where

L 7T

a| B o

Zo=lw™ |
(TP+1)h (T9+1)h
S

and U = (Ugn; k=1,..., T, TP +1,..., N). Therefore, using (S.101) and (S.102), we have

~ ~, =~ ~,~71-1
poe [Bs =) _[XX X2
dg — & VAS. QEVAVA
% h_1/2

)

X'e X' (Zy— Zy)o®+ X'AO, (h)
Zhe Zh(Zo — Zo) 6° + Z{ AO,, (h)

for some matrix A = O, (1). It then follows by the same proof as in Proposition 3.3 that

[5{ 'X X'Z

—1
2 X'A V2) =0, (1 104

“The same bound holds for the corresponding sum involving the other terms in A, V.
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and

< > o511
X'X X'Z 1 =~ ~
[2()5( 2623] aia X (ZO - ZO) 8" =0y (1) 0p (1) = 0, (1) (S.105)

The same arguments can be used for Zj(Zy — Zo)6° and Z')AOP (h) . Therefore, in view of (S.99) and
(S.100), we obtain fiy = p{ + 0, (1) and & = o + 0, (1), respectively, whereas (S.104) and (S.105) imply
Bg = B%+o0, (1) and bg = 8% +o0, (1), respectively. Under the setting where the magnitude of the shifts is
local to zero, we observe that by Proposition 4.1, ]\Afb — ]\Afl? = Op(hl_“) and one can follow the same steps
that led to (S.99) and (S.100) and proceed as above. The final result is 6 = 6° + op (1), which completes
the proof. O

S.D.5.4 Negligibility of the Drift Term

Recall Lemma S.D.10 and apply the same proof as in Section S.D.4.10. Of course, the negligibility only
applies to the drift processes p.; from (2.3) (i.e., only the drift processes of the semimartingale regressors)
and not to u, u9, af or a. The steps are omitted since they are the same.

S.E Additional Simulations Results about HDR Confidence Sets

We continue with the analysis of finite-sample from Section 7. We consider discrete-time DGPs of the
form

n :Dgu0+zt’50+2;5%1{t>T£} + e, t=1,...,T, (S.1)

with T = 100 and, without loss of generality, v° = 0 (except for M5-M6, M8-M9). We consider eight
versions of (S.1): M3 involves a break in the simultaneous mean and variance of an i.i.d. series with Z; = 1
for all t, D, absent, and e; = (1 + 1{t>Tb0})ut with uy ~ i.i.d. .4 (0, 1); M4 is the same as M1 but with
stationary Gaussian AR(1) disturbances e; = 0.3e;—1+uy¢, up ~ i.i.d. A" (0, 0.49); M5 is a partial structural
change model with D; = 1 for all ¢, v° = 1 and Z; = 0.5Z; + u; with u; ~ 4.5.d. .4 (0, 0.75) independent
of e; ~i.i.d. A (0, 1); M6 is similar to M5 but with u; ~ i.i.d. 4" (0, 1) and heteroskedastic disturbances
given by e; = v |Z;| where v, is a sequence of i.i.d. .4 (0, 1) random variables independent of {Z;}; M7 is
the same as M4 but with u; drawn from a t,, distribution with v = 5 degrees of freedom; M8 is a model with
a lagged dependent variable with Dy = y; 1, Z; = 1, e; ~ i.i.d. .4 (0, 0.49), ¥ = 0.3 and Zz{é%l{bTbO} is
replaced by Z; (1 — 1Y) (5OZ1{t>T£}; M9 has FIGARCH(1,d,1) errors given by e; = oyuz, us ~ i.i.d. A (0, 1)

and oy = 0.1+ (1 — 0.2L (1 — L)%)e? where d = 0.6 is the order of differencing and L the lag operator,
Dy =1, =1 and Z; ~ ii.d. 4 (1, 1.44) independent of e;. MI10 is similar to M6 but with an
ARFIMA(0.3, d, 0) regressor Z; with order of differencing d = 0.5, Var(Z;) = 1 and e; ~ .4 (0, 1)
independent of {Z;}. We set 8% = 1 in all models, except in M8 where 3 = 0. The Results are reported
in Table 5-12.
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Table 5: Small-sample coverage rate and length of the confidence set for model M3

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
X =05 HDR 0.970 86.65 0.937 76.29 0.901 55.59 0.934 26.11

Bai (1997) 0.854 70.60 0.843 5827 0.857 40.70 0.923 14.24
ﬁT.neq 0.961 8895 0961 80.33 0961 61.15 0.964 32.16
ILR 0.989 92,53 0.985 84.06 0.977 58.05 0.958 12.31
Ao =0.35 HDR 0976 89.81 0961 83.26 0.935 64.87 0.934 26.11
Bai (1997) 0.823 69.86 0.822 55.87 0.844 3891 0.932 14.24
ﬁT.neq 0.963 89.84 0963 82.26 0.961 65.87 0.964 32.16
ILR 0.990 93.48 0985 88.69 0.982 68.23 0977 1545
Ao =0.2 HDR 0.978 90.39 0975 85.89 0.934 70.05 0.957 29.63
Bai (1997) 0.782 70.24 0.805 56.37 0.831 37.66 0.928 14.80
/U\T.neq 0.968 91.11 0968 87.62 0972 7817 0.967 46.24
ILR 0.980 93.32 0981 91.60 0978 81.60 0.981 22.60
The model is y; = 8° + 60Z1{t>LT)\oJ} + et, e = (1 + 1{t>LT>\oj}) ug, ug ~ t.9.d. .4 (0, 1), T = 100. The notes of Table 2 apply.

Table 6: Small-sample coverage rate and length of the confidence set for model M4

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
X =05 HDR 0.904 7244 0901 57.37 0.919 29.70 0971  5.85

Bai (1997) 0.833 66.34 0.834 41.32 0.895 18.63 0.969 5.49

aT.eq 0.958 87.16 0.968 71.47 0.958 45.82 0.957  28.01

ILR 0.932 79.38 0.944 53.48 0.966 21.98 0.993 4.87

Ao =0.35 HDR 0.910 70.98 0.902 53.88 0.917 28.07 0.973 5.99
Bai (1997) 0.849 65.13 0.840 40.43 0.900 18.69 0.974 5.49

(7T.eq 0.960 87.46 0.961 72.79 0.962 46.44 0.961  28.03

ILR 0.942 80.94 0.946 55.20 0.965 23.55 0.993 4.93

Ao =0.2 HDR 0.905 72.26 0.913 50.61 0.933 25.07 0.973 6.35
Bai (1997) 0.829 65.56 0.899 41.42 0.932 19.62 0.966 5.55

ﬁT.eq 0.962 88.77 0.968 78.61 0.963 57.87 0.965  29.88

ILR 0.938 83.24 0.951 63.66 0.972 2894 0.994 5.16
The model is y; = 8° + 5%1{t>LT>\oJ} + et, et = 0.3ez—1 + ug, ug ~ i.i.d. A (0, 0.49), T = 100. The notes of Table 2 apply.
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Table 7: Small-sample coverage rate and length of the confidence set for model M5

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
Ao =0.5 HDR 0915 77.14 0912 61.71 0.910 30.64 0.912 7.15
Bai (1997) 0.805 65.94 0.821 44.07 0.850 20.71 0.887  5.96
/U\T‘eq 0.950 85.23 0951 6740 0951 39.87 0.955 17.46
ILR 0.961 84.37 0.966 59.94 0977 26.09 0986 7.14
Ao =0.35 HDR 0.915 75.53 0.911 5888 0.905 29.77 0912 7.27
Bai (1997) 0.821 64.69 0.826 42.93 0.849 20.77 0.888  5.99
ﬁT.eq 0.948 8548 0.948 6895 0.948 41.40 0.954 17.57
ILR 0.959 84.67 0964 61.55 0973 27.70 0.987 7.13
Ao =0.2 HDR 0.911 7446 0.931 56.22 0.935 29.22 0.929 7.85
Bai (1997) 0.820 64.06 0.870 42.86 0.896 22.11 0.887 6.16
ﬁT.eq 0.952 86.80 0.956 75.20 0.952 51.99 0.952 19.92
ILR 0.961 86.03 0.964 68.69 0.978 36.34 0.985  7.51

The model is yr = 19 + Zt8° + Z:6% 1s |70 )} + €t> Xt = 05Xt 1 4 ug, ug ~ id.d. A (0, 0.75) , ex ~ i.i.d..t" (0, 1), T = 100. The
notes of Table 2 apply.

Table 8: Small-sample coverage rate and length of the confidence set for model M6

5% =03 6%, =06 5% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
Ao =0.5 HDR 0.920 77.03 0.923 70.69 0.930 60.02 0.969 35.03
Bai (1997) 0.690 56.73 0.716 41.63 0.783 27.53 0.885 12.70
ﬁT.eq 0.962 8776 0.962 7832 0962 63.80 0.962 40.82
ILR 0.790 71.07 0.805 59.66 0.824 40.78 0.909  11.63
Ao =0.35 HDR 0.928 76.41 0925 68.21 0.933 56.17 0.964  31.73
Bai (1997) 0.691 55.18 0.720 40.25 0.757 26.90 0.883  12.62
ﬁT.eq 0.953 87.76 0.953 78.55 0.953 64.81 0.953 41.98
ILR 0.795 71.34 0.804 60.48 0.832 30.42 0.903 10.78
Ao =0.2 HDR 0915 75.86 0919 66.79 0926 52.50 0.957  27.46
Bai (1997) 0.707 55.03 0.770 39.77 0.828 26.82 0.901 12.68
ﬁT.eq 0.951 88.48 0.952 82.09 0954 71.84 0.950 50.72
ILR 0.795 72.01 0.809 62.75 0.829 45.18 0.913 12.62

The model is yr = 19+ Zi8% + Z:6% 145 | 1ag |} + €8s €6 = ve | Ze], ve ~ 4.d. A (0, 1), Zt = 0.5Z¢ 1 +ug, ug ~ i.i.d. .4 (0, 1) T = 100.
The notes of Table 2 apply.
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Table 9: Small-sample coverage rate and length of the confidence set for model M7

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
X =05 HDR 0.918 75.64 0.910 6746 0.931 4854 0.957 12.50

Bai (1997) 0.834 70.13 0.824 52.16 0.861 28.69 0.948 8.45

/U\T‘eq 0.959 88.62 0.959 78.87 0.959 58.60 0.952 30.15

ILR 0.969 86.75 0.959 67.91 0.967 34.13 0.995 9.17

Ao =0.35 HDR 0.926 74.78 0.914 64.86 0.924 45.69 0.956 12.25
Bai (1997) 0.851 69.35 0.847 51.17 0.878 28.59 0.944  8.47

ﬁT.eq 0.964 88.82 0.960 79.74 0.964 60.26 0.964 30.64

ILR 0.972 88.69 0975 73.95 0.981 39.08 0.992 9.08

Ao =0.2 HDR 0.909 78.12 0.921 61.87 0.933 40.66 0.961 11.70
Bai (1997) 0.824 65.23 0.867 51.35 0.915 29.83 0.955 8.70

ﬁT.eq 0.961 89.71 0.960 83.68 0.961 69.25 0.960 35.78

ILR 0.966 9148 0971 82.78 0.984 51.93 0.995 10.87
The model is y: = 89 + 5%1{t>LTAoJ} +et, et = 0.3et—1 + ut, ut ~ i.i.d.ty, v =5, T = 100. The notes of Table 2 apply.

Table 10: Small-sample coverage rate and length of the confidence set for model M8

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
X =05 HDR 0.918 75.08 0.913 6044 0.931 3230 0.965 6.34

Bai (1997) 0.778 60.94 0.815 3814 0.885 17.29 0.949 5.34

Ur.eq 0.949 84.56 0.950 67.64 0.953 42.95 0.950 30.25

ILR 0.943 83.69 0.946 63.24 0.956 32.85 0.982 10.49

Ao =0.35 HDR 0.919 7416 0.916 5853 0.931 3210 0.965 6.48
Bai (1997) 0.799 60.25 0.814 37.94 0.872 17.49 0.952 5.35

Ur.eq 0.951 85.01 0.948 69.14 0.957 4840 0.949 30.31

ILR 0.946 84.12 0.944 63.99 0.960 33.45 0.977 871

Ao =0.2 HDR 0.912 7343 0.929 56.18 0.949 31.23 0.965 6.96
Bai (1997) 0.795 59.43 0.864 38.17 0.910 1852 0.954 5.34

Ur.eq 0.950 86.94 0.951 76.52 0.946 55.72 0.947 38.80

ILR 0.945 83.94 0.953 63.55 0.963 3241 0.982 15.01

The model is y; = 6% (1 - VO) s mao 3 + Y001 + e, e ~ iid. 4 (0, 0.49), 0 = 0.3, T = 100. The notes of Table 2 apply.
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Table 11: Small-sample coverage rate and length of the confidence sets for model M9

6% =03 6% =06 6% =1 6% =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
X =05 HDR 0.903 61.09 0.927 31.14 0930 1833 0.930 9.10

Bai (1997) 0.791 37.86 0.831 17.73 0.855 10.43 0.868 5.30

/U\T‘eq 0.947 65.23 0.947 39.76 0.947 28.82 0.947 20.36

ILR 0.909 72.62 0.946 45.06 0.962 23.97 0.978 9.34

Ao =0.35 HDR 0.904 60.58 0.918 30.96 0.904 18.16 0.928 0.34
Bai (1997) 0.791 37.70 0.829 18.04 0.852 10.61 0.870 5.34

ﬁT.eq 0.942 66.27 0.942 40.63 0.942 29.39 0.942 20.67

ILR 0.922 7220 0947 45.27 0.959 2493 0.973 8.55

Ao =0.2 HDR 0.920 61.37 0.946 31.00 0.942 2044 0944 9.04
Bai (1997) 0.791 39.23 0.841 19.28 0.876 11.99 0.886 6.16

ﬁT.eq 0.934 71.42 0931 4753 0.934 34.12 0934  24.06

ILR 0.920 72.68 0.935 49.61 0.959 2790 0.972 10.01
The model is y; = v0 4 2, 8% + Ztl;%l{t>LT,\oj} +et, Zy ~idd. AN (1, 1.44), {e:} follows a FIGARCH(1,0.6,1) process and T' = 100.

The notes of Table 2 apply.

Table 12: Small-sample coverage rate and length of the confidence set for model M10

0 _ 0 _ 0 _ 0 _
4, =103 89, =10.6 d, =1 65, =2
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
Ao =0.5 HDR 0.952 74.84 0.930 36.02 0.921 13.11 0.916 4.34

Bai (1997) 0.809 45.33 0.844 17.11 0.864 827  0.883 3.61

ﬁT.eq 0.959 72.69 0.959 39.81 0.959 24.25 0.959 14.79

ILR 0.929 83.23 0.951 69.67 0.971 44.40 0.987 10.44

Ao =0.35 HDR 0.934 73.08 0.937 3537 0.923 13.68 0.920 4.55
Bai (1997) 0.821 45.70 0.838 17.78 0.867  8.53 0.889 3.71

/U\T‘eq 0.964 76.14 0.964 44.61 0.965 27.33 0.964 15.84

ILR 0.934 81.32 0.959 6298 0.977 34.38 0.984  9.12

Ao =0.2 HDR 0.941 71.46 0.959 59.03 0.950 15.39 0.919 5.03
Bai (1997) 0.818 47.82 0.872 20.44 0.878 9.60 0.873 3.92

ﬁT.eq 0.971 8240 0971 59.03 0.971 39.02 0.972 20.42

ILR 0.928 83.26 0.952 70.03 0.964 42.65 0.982 10.30
The model is yr = 10 + Z¢B0 + Ze8Y 14~ |72 |3 + €t, €t ~ i-i.d. A (0, 1), Zy ~ ARFIMA (0.3, 0.6, 0), T = 100. The notes of Table 2

apply.
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