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1 Introduction

Inference in the context of autocorrelated and heteroskedastic data requires estimation of asympto-
tic variances. A large literature in statistics and econometrics has focused on the so-called long-run
variance (LRV) estimation. This work is related to the seminal contributions of the estimates of
the spectral density function of a stationarity sequence which include Bartlett (1950), Berk (1974),
Grenander and Rosenblatt (1953), Parzen (1957) and Priestley (1962; 1981). In econometrics,
Andrews (1991) and Newey and West (1987) extended the scope of kernel autocorrelation and hete-
roskedastic consistent (HAC) estimators of the LRV. Test statistics normalized by HAC estimators
follow standard asymptotic distributions under the null hypothesis under mild conditions.

It was early noted that classical HAC estimators lead to test statistics that do not correctly
control the rejection rates under the null hypothesis when there is strong serial dependence in the
data. A vast literature has considered this issue. Pioneering work by Kiefer, Vogelsang, and Bunzel
(2000) and Kiefer and Vogelsang (2002; 2005) introduced the fixed-b LRV estimators for stationary
sequences which are characterized by using a fixed bandwidth [e.g., the Newey-West/Bartlett
estimator including all lags]. The crucial difference relative to classical HAC estimators is that
the LRV estimator is not consistent under fixed-b asymptotics and inference is nonstandard. Test
statistics under the null hypotheses follow nonstandard distributions whose critical values are
obtained numerically. This has limited the use of fixed-b in practice. The advantage of the fixed-
b framework is that it significantly reduces the oversize problem of test statistics when there is
high temporal dependence. Further developments of this framework include Lazarus, Lewis, and
Stock (2020), Gongalves and Vogelsang (2011), Jansson (2004), Miiller (2007), Politis (2011),
Preinerstorfer and Potscher (2016), Rho and Shao (2013), Sun (2014), Sun, Phillips, and Jin
(2008), Zhang and Shao (2013), among others.

LRV estimation under nonstationarity has received relatively little attention. Most of the
methods and results developed in the literature are only valid under stationarity [see Shao and
Wu (2007) for results under nonlinear stationarity]. Recent work by Casini (2021) pointed out
that the results under nonstationarity in Andrews (1991) and Newey and West (1987) provide a
poor approximation. In particular, he showed that test statistics normalized by traditional LRV
estimators can exhibit significant power losses when the data are nonstationary. He attributed the
surprising power losses documented in many heteroskedasticity- and autocorrelation-robust (HAR)
inference contexts to inflated LRV estimates. These testing problems are often characterized by
nonstationary alternative hypotheses [e.g., tests for change-points, for predictive accuracy, for
regime-switching, for time-varying parameters and many others]. A partial list of works that
present evidence of such power issues is Casini (2018; 2021), Casini and Perron (2019, 2021b, 2020a,
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2020b) Chang and Perron (2018), Crainiceanu and Vogelsang (2007), Deng and Perron (2006), Juhl
and Xiao (2009), Kim and Perron (2009), Martins and Perron (2016), Perron and Yamamoto (2021)
and Vogelsang (1999)]. These issues occurs because nonstationarity alters the spectrum at low
frequencies [cf. Casini, Deng, and Perron (2021)]. LRV estimators become inflated and when used
to normalize test statistics the latter lose power. Interestingly, this issue relates to the relationship
between structural breaks and long memory [e.g., Granger and Hyung (2004) and Mikosch and
Starica (2004)]. Intuitively, LRV estimators are weighted sums of sample autocovariances, say I'(k),
where k is the lag. Under nonstationarity, Casini, Deng, and Perron (2021) showed analytically
that ['(k) = Ty (k) +d where Dp(k) = T} S E(ViVY,) (k> 0) and d > 0 for some time series
{V;} that satisfies high level conditions. Assuming positive dependence, the result implies that for
each lag k the corresponding sample autocovariance overestimates the true autocovariance. This
leads to standard errors that are biased upward and to a consequent drop in the power of the
tests. Interestingly, d is independent of k£ so that the more lags are included the more severe is
the problem. Further, by virtue of weak dependence we know that I'z (k) — 0 as k — oo but
d > 0 across k. For these reasons, fixed-b-type LRV estimators are expected to suffer most from
this issue.

Casini (2021) proposed to modify classical HAC estimators by adding a second kernel which
applies smoothing over time. Such double kernel HAC estimators (DK-HAC) are naturally justi-
fied under a local stationarity assumption since the spectrum then changes slowly over time. In
this paper we consider the theoretical properties of DK-HAC estimators under general nonstati-
onarity (i.e., unconditionally heteroskedastic random variables). We show consistency and derive
asymptotic MSE bounds that are sharper than the ones in Andrews (1991). The bounds apply
to a given class of processes and require the existence of a certain process whose autocovariance
function forms an envelope for the autocovariance functions of all processes in the class. Andrews
(1991) required this process to be second-order stationary which consequently restricts the admis-
sible class. We instead use restrictions on nonstationarity in the form of smoothness of the spectral
density over time except at a finite number of change-points where the spectral density can exhibit
breaks. To achieve this, our framework uses the segmented locally stationary assumption recently
studied by Casini (2021). It extends the locally stationary framework of Dahlhaus (1997) [see also
Priestley (1965), Vogt (2012), Zhou (2013), Dahlhaus, Richter, and Wu (2019)]. Our bounds apply
to a much wider class of processes. They are more informative because the bounds change with
the nature of the nonstationary.

We determine the optimal data-dependent bandwidths and kernels that minimize the asymp-
totic minimax MSE bounds. There has been some work on data-dependent bandwidths for M-

estimators in locally stationary processes using cross-validation [see Richter and Dahlhaus (2019)].
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Our approach differs in using the plug-in method. Recent work by Preinerstorfer and Potscher
(2016), Potscher and Preinerstorfer (2018; 2019) investigated properties of heteroskedasticity and
autocorrelation robust (HAR) tests that hold uniformly over a certain class of data-generating
processes. We instead focus on a MSE criterion and discuss finite-sample issues related to HAR
tests in the presence of nonstationarity which are very different and apply more often in practice.

Because the DK-HAC estimators can be slightly oversized with high serial correlation in
the process of interest, we introduce a novel nonparametric nonlinear VAR prewhitening step
to apply prior to constructing the DK-HAC estimators. It is robust to nonstationarity unlike
previous prewhitened procedures [e.g., Andrews and Monahan (1992), Preinerstorfer (2017), Rho
and Shao (2013)]. The latter are sensitive to estimation errors in the whitening step when there
is nonstationarity in the autoregressive dynamics. For example, with AR(1) prewhitening the
resulting LRV estimator is given by jma,pw = jCla,V* /(1—a;)? where @, is the estimated parameter
in the regression V; = a;V;_1 + V* involving the process of interest {V;} and jCIay* is a classical
HAC estimator applied to the prewhitened residuals {V;*}. Under nonstationarity in {V;}, a;
is biased toward one, [cf. Perron (1989)]. This makes the recoloring step unstable as (1 — a@;)?
approaches zero and more so as the magnitude of the nonstationarity increases. The consistency,
rate of convergence and MSE of the new prewhitening step are established under segmented local
stationarity. The prewhitened DK-HAC estimators lead tot tests with exact size close to the
nominal level and much improved power.

Recent theoretical developments have favored the use of fixed-b methods under stationarity
over using HAC standard errors [cf. Lazarus, Lewis, Stock, and Watson]. Some reassessments are
in order because the theoretical justification for using long bandwidths does not carry over to non-
stationary environments. In addition, the results under nonstationarity can also provide guidance
for the case of misspecified models with stationary data and for models with outliers. The rest of
the paper is organized as follows. Section 2 introduces the nonlinear VAR prewhitening procedure.
Asymptotic results for the latter are established in Section 3. Section 4 presents theoretical results
for DK-HAC estimators under general nonstationarity. Section 5 presents the simulation results
about the finite-sample size and power of HAR inference tests. Section 6 concludes. Additional
results and all proofs are included in a supplement [cf. Casini and Perron (2021c)]. The code to

implement the proposed methods is available online in Matlab, R and Stata languages.
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2 The Statistical Environment

HAR inference requires the estimation of asymptotic variances of the form J 2 limy_, oo Jr where

= Z_:Z_: Vi(Bo)Vi(Bo)"),

with V;(8) being a random p-vector for each f € © C RPs. For the linear regression model
Y = x300 + er, we have V;(8y) = x4e;. More generally, in nonlinear dynamic models we have, under

mild conditions,

(BTJTBT>_1/2\/T<B — Bo) S (0, ]pﬁ)v

where Br is a nonrandom pg X p matrix. Often it is easy to construct estimators Br such that
BT — By Eo. Thus, one needs a consistent estimate of J = limy_,., Jr to construct a consistent
estimate of limy_, o, By JrB/.. Our goal is to consider the estimation of J under nonstationarity. We
first consider the case of segmented locally stationary processes. In Section 4 we consider minimax

MSE bounds for LRV estimation under general nonstationarity.

2.1 Segmented Locally Stationary

Let 0 = Xy < A1 < ... < Ay < Ay = 1. A function G (u, ) : [0, 1] x R — C is said to be
piecewise (Lipschitz) continuous in u with m + 1 segments if for each segment j = 1,..., m+1
it satisfies sup,, |G (u, w) — G (v, w) | < Klu — ] for any w € R with \;_; < u, v < ); for some
K < co. We define G, (u, w) = G (u, w) for A\j_; < u < ;. A function G (-, ) : [0,1]] xR —= C
is said to be left-differentiable at ug if IG (ug,w) /O_u £ lim,_,,- (G (up, w) — G (u, w)) / (ug — )

exists for any w € R.

Definition 2.1. A sequence of stochastic processes V,r (t=1,...,T) is called segmented lo-
cally stationary (SLS) with mg + 1 regimes, transfer function A° and trend p. if there exists a

representation,

™

Vir =y (t/T) + / exp (iwt) AY, () d€ (w). (F=Tla+1. 1), (21

™

for j =1,..., mg+ 1, where by convention 7§ = 0 and T, ,, = T and the following holds:
(i) € (\) is a stochastic process on [—, 7] with € (w) = ¢ (—w) and

cum {d€ (w1),..., d§(wp)} = (iwj) gr (Wi, ..., we_1) dwy ... dw,,

J=1
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where cum {-} denotes the cumulant spectra of r-th order, g; =0, g2 (w) =1, |gr (w1, ..., wr—1)| <
M, for all r with M, being a constant that may depend on r, and ¢ (w) = 332§ (w + 27j) is
the period 27 extension of the Dirac delta function 4 (+).

(ii) There exists a constant K and a piecewise continuous function A : [0, 1] x R — C such
that, for each j = 1,..., mg + 1, there exists a 2m-periodic function A;: (A)_;, AJ] x R — C with
Aj (u, —w) = Aj (u, w), A £ T?/T and for all T,

Au, w) = Aj(u, w) for A} <u <A\, (2.2)
sup sup ‘Ag,t,T (w) — A, (t/T, w)‘ < KT (2.3)

1<j<mo+1 T]071<t§T]Q, w
(iii) p; (t/T') is piecewise continuous.

In the context of HAR inference V; has a zero mean and so p (t/7") = 0 for all ¢ in Definition
2.1.

2.2 Nonparametric Nonlinear VAR Prewhitening

We define a class of nonlinear VAR prewhitened double kernel HAC (DK-HAC) estimators of Jr
using three steps as follows. Suppose 3 is a v/T-consistent estimator of Bo. Divide the sample
in |T/nr] blocks, each with ny observations. For each block r = 0,..., |T/nr], one estimates a

-~

VAR(pa) model for V;(B):

vt(B) = pZA ﬁm»‘/}_j(g) + V{"(B) for t=rnp+1,..., (r+1)nr, (2.4)

=1

(for the last block, t = |T/nr] +1,..., T) where ﬁr’j for j = 1,..., pa are p X p least-squares
estimates and {V,*(f)} is the corresponding residual vector. The order of the VAR, p4, can
potentially change across blocks but for notational ease we assume it is the same for each r. The
choices of the block length nr and how to optimally split the sample depend on the property of
the spectrum of {V;(5)}. A test for breaks versus smooth changes in the spectrum of {V;(5)} is
introduced in Casini and Perron (2021a). The latter can be employed here to efficiently determine
the sample-spitting. This results in the sample being split in blocks with the property that within
each block {V}(ﬁ)} is locally stationary. Thus, least-squares estimation within blocks yields good
estimates /Alm-. The fitted VAR need not be the true model; it is used only as a tool to “soak up”
some of the serial dependence in {V;(5)} and to leave one with residuals {V;*(3)} that are closer to

white noise than are the variables {V;(5)}. This step is referred to as the whitening transformation.
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The prewhitened DK-HAC estimator jT,pW is constructed by applying the DK-HAC estimator

to an inverse transformation of the sequence of VAR residuals {V;*(5)} (i.e. the recoloring). Let

T T—1

Jowir (Vs Bip) = DI (b7 k) T3 (k),  where (2.5)
k=—T+1
~ . nr [(T=nz)/n7]
F*D (k) = T —nyp E;“,D (rnT/T’ k) )
r=0

with K (-) is a real-valued kernel in the class K defined below, 5’1‘7T is a data-dependent bandwidth

sequence to be discussed below, ny — oo, and

7. -1 r n
(Th5) " Sl 65 (el

~ —1
(Tb;T> Zs—karl K (((Hl)nT (S+k/2))/T> Vb s+kVD*/ k<0

bQT

B ) (s k/2>)/T) UVt k>0
chr (rnp/T, k) =

Y

175,5 = 55‘75*, Vr = V*(f3), K3 being a kernel, B;T is a data-dependent bandwidth sequence to be
defined below, and D, = (I, — 204 ﬁD,sﬁj)_l with ﬁD,s,j = Am‘ for s=rnr+1,..., (r+1)ny.
In order to guarantee positive semi-definiteness, one needs to use a data taper or, e.g., for k > 0
[cf. Casini (2021)],

K3 ((r +)ng — (s - k/2))
Tbs

1/2
_ (K2 ((r—l—lZnT—s) K, ((r—i—l)ngi—(s—k))) .
Tb;T Tb;"T

Below we assume that flm- 5 A, ; € RP*P for all r and j. We suggest using the Quadratic Spectral
(QS) kernel

K (2) = (25/ (120%2%)) [w — cos (67rx/5)1 ,

and a quadratic-type kernel [cf. Epanechnikov (1969)] K» (z) = 6z (1 —2),0 < x < 1. These
kernels are optimal under an MSE criterion. For data-dependent bandwidths we use plug-in
estimates of the optimal value that minimizes some MSE criterion, see Section 4 and Casini (2021).
Let I'p.y (k) = Cov(Vp rus Vi ru_s) and Cp, = Z? 1 Xl Lity @ ut;, where ¢; is the i-th elementary
p-vector. The notation W and W are used for p? x p? weight matrices. Let F(K>) fo K2 (x)dx,
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H (K>) = (f) 2° K> (2) d)?,

Dy (u) £ vec (820*[) (u, k) /8u2), W vec (020*]3 (u, k) /0u2) :
Dy (u) £ x[W (L + Cpp) 3 ¢p (u, ) @ [eh (u, 1) + ¢ (u, 1+ 2k)],

l=—0

where ¢, (u, k) = Cov(V3 gy Vi us)s Vis, = Dy

pPA
V=V, =Y A,V fort =rny +1,..., (r +1)nr,

j=1

pa
D, = (1, — ZADM)*I, Apij = Ay fort =rnp+1,..., (r+1)np.
j=1
The optimal by 1 is given by [see Casini (2021)]
030" (w) = [H (Ky) Dy (w)]™° (F (Ky) (Da (u))* TV

Let K, = lim, (1 — K, (7)) /|z|? for ¢ € [0, 00); K1, < oo if and only if K; (x) is ¢ times
differentiable at zero. Let f}, (u, w) = Y52

k=—o00

of f3 (u, w) at w=0Dby fi? (u, 0) 2 2m) ' 2 |k|¢; (u, k). Let

¢ (u, k) e ™* and define the index of smoothness

_ e (fol 29 (4, 0) du)l Wvec (fol 29 (4, 0) du)
trW (L2 + Cpp) (fol I (u, 0) du) ® (fol i (v, 0) dv) .

¢p (q)

The optimal b; p given the optimal value 63%,* is given by [see Casini (2021)],
Bt — (20K, 0p () TOSL ([ K2 (y) dy [ K3 (@) de))~/@4),

with B;ZE’* = fol b;’f’}’* (u) du. For the QS kernel, ¢ = 2, K5 = 1.421223, and [ K7 (z)dx = 1. For
the optimal K, we have H(K5) = 0.09 and F(K3™") = 1.2.

In order to construct a data-dependent bandwidth for by 1 (u), we need consistent estimates
of Dy.p (u) and Dy p (u). They are discussed in Casini (2021). We set W) = p=1 for all r which
corresponds to the normalization used below for W. The estimate of D; p (u) requires a further

parametric smoothness assumption. This results in,

Dyp(u) 2 [S,] > {(3/#) (14 0.8(cos 1.5 + cos 4mu) exp (—iw,)) " (0.8 (=47 sin (47u))) exp (—iws)

SESw

—77 1|14 0.8 (cos 1.5 + cos 4mu) exp (—iws)| ™ <0.8 (—167r2 cos (47Tu))> exp (—iws)} :

7
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where [S,,] is the cardinality of S,, and wyiq > ws with wy = —7, wig,] = 7. An estimate of D p (u)

is given by

LT4/25J

Do (ug) 2 p 12 S (o, 1) 657 (uo, 1) + S5 (uo, 1+ 2K)] |
r= ll—f|_T4/25J

where the number of summands grows at the same rate as the inverse of the optimal bandwidth

bopt *. Hence, the estimate of the optimal bandwidth b°p ™ is given by

\T/nr]-1

527T = (nr/T) Z A;yT (u,), where (2.6)
r=1
b7 (ur) = 1.7781(Dyp (u,)) ™V (Dayp ()T, wy = rng /T (2.7)

The data-dependent bandwidth parameter BT}T is then defined as follows. First, one specifies
p univariate approximating parametric models for {VB(: )} for r =1,..., p. Second, one estimates
the parameters of the approximating parametric model by least-squares. Third, one substitutes
these estimates into ¢p (q) with the estimate denoted by op (q). This yields the data-dependent

bandwidth parameter
B = 201 o (@) Ty [ I (0) o K3 () ), 28)

For the QS kernel, we have ETT = 0.6828(¢p (2) T@;T)*l/f’. The suggested approximating parame-
tric models are locally stationary first order autoregressive (AR(1)) models for V*(T = a\" (¢)T)
Vi 1t W r=1,..., p. Let a}"” (u) and (6 (u))? be the least-squares estimates of the autore-

gressive and innovation variance parameters computed using data close to rescaled time u = ¢/T":

" t’—t " V( )VD() . t o ) 1/2
alT (u) _ ]t 2,T AJ( J = 6-(1”) (u) = ( Z (VDTJ — ( ) VD,] 1) ) ,
j=t—mnz r+1 (VD ) Jj=t—ng r+1



LONG-RUN VARIANCE ESTIMATION UNDER NONSTATIONARITY

where ng — 00. Then, for ¢ = 2, we have

2

2

~ v nar [7/ms.0 ] =1 (60 ((Gnsz +1) /T)a” ((jnsr + 1) /T))
¢p (2) = Z Winr 18 T Z (r) /- 4 /

= = (1-a” (Gnsr +1) /7))

2
T/n3r|—1 ~(r) . 2
S e G Ve 1)
= T = (1=a" (Gnsr+1)/7))
where W™ r =1,..., p are pre-specified weights and nz s — co. The usual choice for W) is

one for all r except that which corresponds to an intercept and zero for the latter.

3 Large-Sample Results for Prewhitened DK-HAC

In this section we analyze the asymptotic properties of jpwj. We consider the following class of

kernels:

Ky ={K;() e Ki: (i) |Ki (z)] < Cy|2|”
withb > max (1+ 1/q, 4) for |z| € [T, DrheTy], T-Y?hy — 0o, Dy > 0, Ty, Ty € R,
1 <7, < Ty, andwithb > 1+ 1/qfor |z| ¢ [T1, DrhrTy], andsome C; < oo,
where g € (0, co) issuch that K, € (0, 00), (it) | K, (z) — K; (y)| < Cy |z — y| Vz,
y € Rforsome costant Cy < oo, and (iii) g < 34/4} .

K3 contains commonly used kernels, e.g., QS, Bartlett, Parzen, and Tukey-Hanning, with the
exception of the truncated kernel. For the S, Parzen, and Tukey-Hanning kernels, ¢ = 2. For the
Bartlett kernel, ¢ = 1. We define

MSE(TbLTbQ’T, jT, JT, W) == Tb17Tb27TE[VeC(jT — JT)/WVGC(jT — JT)]

We now present consistency and rate of convergence results that hold when {V;} is segmented

locally stationary. We need the following assumptions.

Assumption 3.1. (i) {V;} is a mean-zero segmented locally stationary process with mo+1 regimes
as defined in Section 2.1; (i) A(u, w) is twice continuously differentiable in u at all u # ),
j=1,..., mg+ 1 with uniformly bounded derivatives (0/0u) A (u, -) and (8*/0u®) A (u, -), and
Lipschitz continuous in the second component; (iii) (0*/0u®) A (u, -) is Lipschitz continuous at

all u # X, j = 1,...,mo +1; () A(u,w) is twice left-differentiable in u at u = A, j =

9
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1,..., mo+ 1 with uniformly bounded derivatives (0/0_u) A (u, -) and (0*/0_u?*) A (u, -) and has

piecewise Lipschitz continuous derivative (0*/0_u*) A (u, ).
We also need to impose conditions on the temporal dependence of {V;}. Let

(a1,a2,a3,a4)
Kyt (u, v, w)

[I>

R(01002:93:00) (¢t oyt 4v, 4 w) — K9S (o 4o, 4 w)
LBV VRV BV VD v Vi

where {V;} is a Gaussian sequence with the same mean and covariance structure as {V;}.
/4:%7‘12’“3’“) (u, v, w) is the time-¢ fourth-order cumulant of (V™ V;{®2), V) 104y while 5 (91020294)
(t, t+u, t+v, t+w) is the time-t centered fourth moment of V; if V; were Gaussian. Let Apax (A)

denote the largest eigenvalue of the matrix A.

(a1,a2,a3,a4)

Assumption 3.2. (1) 3232 suP,eqo, 1 llc (u, k)| < oo and 3772 3732 302 oo SUP, Ky 7]

(k, j, 1) < oo for all ay,as,as,aqy < p. (i) For all ay,as,a3,ay < p there exists a function
Fayasasas © [0, 1] X Z X Z X Z — R such that sup;< <, 1 SUPX0 | cuca? |/-i‘f1LTaiJa3 @) (k, s, 1) —
Ray.agasas (U K, 8, 1) | < KT7! for some constant K ; the function Ra, ay.as.0s (U, k, s, 1) is twice dif-
ferentiable inw at allu # X (7 = 1,..., mo+1) with uniformly bounded derivatives (0/0u) Ra, ay.a3,a4
(1, -+, ) and (0% /OU®) Ray ap.as,.as (U -, - +), and twice left-differentiable inw atu = X} (j =1,..., mo+
1) with uniformly bounded derivatives (0/0_u) Fay az.az.as (W55 *) and (0%/O_u?)Ray ap.as.as (Uy )

and piecewise Lipschitz continuous derivative (0%/0_u?) Fay ag.ag.as (U5 *)-

Assumption 3.3. (i) VT (5—5y) = Oz (1); (ii) SUPyep, E||[Vizu)||? < 00; (i) supyepo, 1] ESupseo
1(0/08") Virwy (B) |17 < 00; (iv) [°2 K1 (y)l dy, [y |Ka (2)] do < 0.

Assumption 3.4. (i) Assumption 3.2-(i) holds with V; replaced by

(mep vec <<886,VLTuJ (50)> —E (aaﬁ, VT (50)>>,>/-

(i1) sup,eo,y E(supgeo || (07/0805) Vi (B) [1)* < o0 for all r=1,.... p.
Assumption 3.5. Let Wr denote a p? x p? weight matriz such that Wy Ew.

Assumption 3.6. (i) ¢p (q) = Op (1) and 1/¢p (q) = Op (1); (i) inf{T/nsz. \/az Hép (q) —
¢o+) = Op (1) for some ¢p- € (0, 00) where nor/T +ngr/T — 0, n5/4/T — [cg, 00), néOf/T —
[c3, 00) with 0 < ¢, ¢3 < 00; (i) SUP,e(p 1) Amax(L, (k) < Csk™ for all k > 0 for some Cs < 0o
and some | > max{2, (4¢+2)/(2+¢q), (11+6q) /(11 +4q), (23+ 34q) / (23+ 10q)}, where q
is as in Ks; () uniformly in v € [0,1], Dy (u), Dy (u), 1/Dy (u) and 1/Dy(u) are Op(1);

10
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(V) Wepr —ws — 0, [Su] ™" = o0 at rate O (T™Y) and O (T), respectively; (vi) /Tbo.r (u)(Dy (1)
—Dy(u)) = Op (1) for all uw € [0, 1]; (vii) Ky includes kernels that satisfy |Ky (x) — Ky (y)] <
Cylz —y| for all z, y € R and some constant Cy < oc.

Assumption 3.7. w/n;p(ﬁm —A,.;) = Op (1) for some A,; € RP*P for all j =1,..., pa and all
r=0,..., |T/nr].

For the consistency of jT,pW, Assumption 3.1-3.3, 3.6-(i,iv,vii) and 3.7 are sufficient. For the

rate of convergence and asymptotic MSE results additional conditions are needed. Let

B 1 —1/(2¢+1)
bo, 7 = <2qK12,q¢9*T592,T//K12 (y) dy/ K3 (x) dl’) ;
0

where bg, 7 2 [['[H (K2) Dy (uw)]™V/? (F (Ky) Dy (u))/° T~"/5du. Recall that the bandwidths E;T,
1)2T and b p are defined by (2.6), (2.7) and (2.8), respectively.

Theorem 3.1. Suppose K, (-) € K3, q is as in K3, || fol Fi9 (4, 0)|| < co. Then, we have:
(i) If Assumption 3.1-3.3, 3.0-(i,iv,vii) and 3.7 hold, w/nTBiT — 00, and q¢ > 1/2, then
%w@p%ﬂ hﬂo

nT/T(b’{,T)q — 0 TbQT/(TLTb ) — 0 Tb Tbl T/nT — O then \/Tbethgz,T(Jpr(bl T bQT) —
Jr) = Op (1).

(11i) Let y.q = 2¢K3 o+ /(| K7 (y) dy fol K2 (z)dx). If Assumption 3.3-3.5 and 5.0~ (i, 44,0, vi,vii
hold, then

lim MSE (T4q/ 100g+1) F (b; . b T)  Jr, WT)

T—o0

= 472 lyK,inqvec < / 29 (4, 0) du> Wvec ( / 9 (4, 0) duﬂ
+/K12(y)dy/K22(m)dxtrW(I Cop (/ fDuOdu> (/ I (v, 0)d )

A corresponding result to Theorem 3.1 for non-prewhitened DK-HAC estimators is established
in Theorem 5.1 in Casini (2021) under the same assumptions with exception of Assumption 3.7.
Note that for u # X0 (r =1,..., mo), f} (u, w) = D (u, w) f* (u, w) D (u, w)", where D (u, w) =
(I, — X204, Apj (u) e%)~! with Ap; (u) = Apru; +O(T7") and f* (u, w) is the local spectral
density function of {V;*}. Since D (u —k/T, w) = D (u, w) + O (T~!) by local stationarity, we

11
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have,

q/2 ﬁ
dw1

-1
fE(Q) (u, 0) = (—) D (u, w)fl f(u, w) (D (u, w)/) ] lw=0 + O (T_1> , g even.
A meaningful comparison between prewhitened and non-prewhitened DK-HAC estimators Jr can
be made only if reasonable choices of the bandwdiths b; 7 and by 7 are made. When the optimal
bandwidths for jpwy and fT are used we find that jT,pW has smaller asymptotic MSE than fT if

and only if (assuming p = 1, i.e., the scalar case, with w;; = 1)

/01 Fi9 (4, 0) du(/ol I (u, 0) du) ) < /01 9 (u, 0) du (/01 f (u, 0) du>2q_ (3.1)

squared bias variance squared bias variance

A numerical comparison would be tedious since the condition depends on the true data-generating
process of {V,} and the VAR approximation for {V;}. Under stationarity, Grenander and Rosen-
blatt (1957) and Andrews and Monahan (1992) considered a few examples. We can make a few
observations on the difference between the condition (3.1) and an analogous condition for the case
with {V;} second-order stationary and Dy, = D = (1 — 302, A;)7! for all s [cf. Andrews and
Monahan (1992)]. The condition in Andrews and Monahan (1992) is then

[f@(0)[D* < [f7(0)| (3.2)

where the quantities f7(0) and £*( (0) do not depend on u by stationarity. The main difference
between the two conditions (3.2)-(3.1) is that the part involving the asymptotic variance is missing
in (3.2). The quantities |f*@ (0)|D? and |f?(0)| are from the asymptotic squared bias. This is
a consequence of the fact that prewhitened and non-prewhitened HAC estimators have the same
asymptotic variance under stationarity when the optimal bandwidths are used. This property
does not hold when {V;} is nonstationary. The condition (3.1) suggests instead that, in general,
both the asymptotic squared bias and asymptotic variance of prewhitened and non-prewhitened
HAC estimators can be different. Simulations in Andrews and Monahan (1992) showed that this is
indeed the case even under stationarity: the variance of the prewhitened HAC estimators is larger
than that of the non-prewhitened HAC estimators—this feature is consistent with our theoretical

results but not with theirs.
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4 Extension to General Nonstationary Random Variables

We now move from SLS to unconditionally heteroskedastic processes and establish new MSE
bounds which we compare to existing ones. To focus on the main intuition and for comparison
purposes, we consider the non-prewhitened DK-HAC estimator

T-1

Jr(bir, bar) = S Ki(book)T (k)

k=—T+1

where I' (k) is defined analogously to I, (k) but with V; in place of 175715. Corresponding results
for the prewhitened estimator ij,T can be obtained by using the results of the previous section,
though the proofs are more lengthy with no special gain in intuition. We provide theoretical results
under the assumption that {V;} is generated by some distribution &?. E4 denotes the expectation
taken under &?. We establish lower and upper bounds on the MSE under & and use a minimax

MSE criterion for optimality. Define the sample size dependent spectral density of {V;} as

T-1
forw) 2@r)™" Y Ter(k)exp(—iwk) for w € [~ 7],
k=—T+1
where I'» (k) is defined analogously to I'r;, but with the expectation taken under &2. The
estimand is then given by Jz £ ;‘C;ETH Lor (k).

The theoretical bounds below are derived in terms of two distributions &, w = L, U,
under which {V;} is a zero-mean segmented locally stationary with mg + 1 regimes and satisfies
Assumption 3.1-3.2 with autocovariance function {I'», /7 (k)}. Then, {a'V;} has spectral density
foya (W)= fol [0 (u, W) du where

fona(u, w) 2 @2m)~" > aTy, . (k)aexp (—iwk)foralla € R.
k=00
Let k2 qve (k, j, m) denote the time-¢ fourth-order cumulant of (a'V;, a'Vitg, a'Vitj, a'Viiy,) under
. Define

Py = {9 D =Lopar (k) SToyr (k) SToyuyr (k) and |k ave (K, j, m)| < s (k, j, m)]

Vt>1,k, j, m>—t+1, a € RPthat satisfies Z Z Z sup Ky (k, j, m) < oo}7
t

k=—00 j=—00 m=—00

13



ALESSANDRO CASINI AND PIERRE PERRON

and P, 2 {,@ :0< Ty, yr (k) <Tpyr(k), YVt > 1, k> —t+ land kpqvy (K, J, m)
satisfies the same condition asin Py } .

To derive the MSE bounds for a given class of general nonstationary processes one needs to
impose restrictions on the autocovariance function of the processes in the class relative to the
autocovariance function of some process whose second-order properties are known. Py includes
all distributions such that the autocovariances of {V;} are bounded above by those of some SLS
process with distribution 7y, thereby allowing considerable variability of I'» ;7 (k) for given ¢ and
k. The set Py, requires the autocovariances of {V;} to be bounded below by positive semidefinite
autocovariances of some SLS process with distribution &2;. The sets Py and Pj contain all
distributions that generate nonstationary processes whose autocovariance function are below

Let ¢, (u, k) = [ €“*T 5, ., (k) dw denote the local autocovariance associated to the distri-
bution &, w = L, U. Let

K1: {Kl() : R—)[—l, 1] Kl(O):l, Kl(x):Kl(—x),‘v’:EG]R
/ K} (z)dx < oo, K (+) is continuous at 0 and at all but finite numbers of points}.

Note that K3 C K. In particular, K includes also the truncated kernel.

4.1 Consistency, Rate of Convergence and MSE Bounds

Consider the following generalization of Assumption 3.1-3.2:

Assumption 4.1. {V;} is a mean-zero sequence and satisfies Y232 supysy ||[Ex(ViV/ )| < o0 and

ai,az,as,a .
for all a, as, as, ay < p, Y, Y20 Y supsy [wih 2 (k, j, m)| < oc.

Let MSE (-) denote the MSE of - under &2 and let K, , = {K; (-) € K;: K, (z) > 0Vz}.
K, . is a subset of K; that contains all kernels that are non-negative and is used for some results

below. The QS kernel is not in K ;. The smoothness of f», ., (u, w) at w = 0 is indexed by

FO w0y = @21)7" S k" d Ty, (k) a for g €0, 00), w= L, U.

k=—00

We first consider the MSE bounds for the estimator Jp that is constructed using V;(fy) rather

14
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than ‘A/t Let
K, = {KQ(-) : R =0, 0] : Ky(x) =Ky (1—2x), /Kg(a:)da::
Ky (x) =0, for x ¢ [0, 1], K5 (-) is continuous}.
Theorem 4.1. Suppose Assumption 4.1 holds, Ky () € Ko, by, bor — 0, np — oo, np/T — 0
and 1/Tbyrbor — 0. If nT/TblT — 0, b37/b{ 7 — 0 and be?;le,T — v € (0, 00) for some

q € [0, 00) for which K, 4, |f0 o o (u, 0)du| € [0, 00), w=L, U, a € RP, then we have:
(i) for all Ky (-) € K1,

1 2
hm Tb1 1bar sup MSE» (a JTa) = 472 [ 12,(1 (/ fgr)],a (u, 0) du>
0

PePy

+2/K12 (y) dy/o1 K2 (z)dx (/01 fop.a(u, 0) du>2] .

(i) for all Ky () € K 4,

1 2
. : 7 42 2 (@)
TlggoTbl,TblTylglgLMSEy (a’JTa) =47 ['yKLq (/0 [ o (u, 0) du)

v2 [ K2y [ K3 ) ( [ a0 du)2

The theoretical bounds in Theorem 4.1 are sharper than the ones in Andrews (1991) which are

based on stationarity (i.e., the autocovariances that dominate the autocovariances of any & € Py
are assumed in Andrews (1991) to be those of a stationary process). Given that stationarity is a
special case of SLS, our bounds apply to a wide class of processes. Furthermore, they are more
informative because they change with the specific type of nonstationarity unlike Andrews’ bounds
that depend on the spectral density of a stationary process.

The theorem is derived under the assumption b%jT /bl — 0. When instead b%T /blp —ve

(0, ), there is an additional term in the bound. For example, in part (i) this term is

(211//0 72Ky (v Z (82/8u2) co, (u, k) du)?.

k=—o00

Some of the results of this paper are extended to the case b3 /b » — v € (0, 00) in Belotti, Casini,

Catania, Grassi, and Perron. Thus, our bounds show how nonstationarity influences the bias-
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variance trade-off. They also highlight how it is affected by the smoothing over the time direction
versus the autocovariance lags direction. These are important elements in order to understand the
properties of HAR tests normalized by LRV estimators. We now extend the results in Theorem
4.1 to the estimator Jp that uses V().

Assumption 4.2. (1) Assumption 4.1 holds with V; replaced by (V/p,;, vec(((9/08")V ru)(5o))—
E((9/08') Viru (0))')'; (i) subuepn,y E (supsee [(02/0808 V5 (B) |I?) < oo for allr = 1,..., p.

To show the asymptotic equivalence of the MSE of o’ Jra to that of @’ Jra we need an additional

assumption. Define

T-1
e S8 ()
k=—T+1
[T'/nr] T
. L+ D)ng—(s—k/2)/T\ 0 ,
« n?T Z (Tbggﬂ) 1/2 Z K2 (((T )nT ; (3 / ))/ ) aia‘/s (BO)GVS—k (50) 7
r=0 s=k+1 2,T 6
R T-1 ny [T/nr] . T
HQ’T = bl,T Z K1 (bl,Tk) sup ? Z (TbQ’T)_ Z
k=—T+1 peo r=0 s=k+1
; ((7“+1)nT—(S—k/2))/T> * : ‘
x K a'Vy (B)a'V,_ )
2 ( bQ,T 8585, </8) k (B)

Let Hff%, B™ and B denote the r-th elements of Hy.r, B, and By, respectively, for r = 1,..., p.

Assumption 4.3. For allr =1,..., p, limsupy_, ., Supep, E@(Hf?p\/f(g(”) — ﬁ(()r)))Q < oo and
lim supyr_, ., SUpP e p,; Eﬂ(ﬁ(ﬁ - BO)IHZ,T\/T(ﬁ - 50))2 < 0.

Theorem 4.2. Suppose K, (-) € Ky, Ks(-) € Ko, by, bar — 0, np — oo, np/T — 0 and
1/Tby rbor — 0. We have:

(i) If Assumption 3.3 and 4.1 hold, \/TbLT — 00, then fT — Jr L0 and jT — jT Eo.

(ii) If Assumption 3.3 and 4.1-4.2 hold, ny/Tbyr — 0, ng/Tb] 7 — 0 and Tb??;lsz — €
(0, 00) for some q € [0, 0o) for which K4, ]fol f;}fl’a (u, 0)du| € [0, 00), w=U, L, a € RP, then
JTby by (Jp — Jp) = O (1) and \/Thy 7 (Jp — Jp) = 05 (1).

(i11) Under the assumptions of part (ii) and Assumption /.3,

lim sup Tbhy by r|MSE s (a' Jra) — MSE(a' Jra)| = 0
T—o0 PPy

for all a € R? such that |f01 é;’[)],a (u, 0) du| < 0.
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Theorem 4.2 extends the consistency, rate of convergence, MSE results of Theorem 3.2 in
Casini (2021). The asymptotic equivalence of the MSE implies that the bounds in Theorem 4.1
applies also to Jr as well as to . The MSE equivalence is used to show that the optimal kernels
and bandwidths results below apply to Jr as well as to Jr. Similar results can be shown for the
prewhitened estimator jTPW. For this case, the sets Py and P would need to be defined in
terms of the autocovariance function of Vp, = D;V;*. The distributions & and &, that form an
envelope for the autocovariances of Vp , may either depend on the same or on different prewhitening

models.

4.2 Optimal Bandwidths and Kernels

We use the sequential MSE procedure that first determines the optimal by 7 (u) and then determines
the optimal b; 7 as function of the integrated optimal BQ,T: see Casini (2021). This contrasts with
the MSE criterion used by Belotti, Casini, Catania, Grassi, and Perron which determines the
optimal b;  and by p that jointly minimize the maximum asymptotic MSE bound. An advantage
of the sequential criterion is that the optimal by 7 (u) is determined for each u. Thus, it accounts
more accurately for nonstationarity. The results for the global MSE criterion can be easily extended
using similar arguments as those used in this section. We consider distributions & € Py 5 where
Py, C Py is defined below. We need to restrict attention to a subset Py o of Py for technical
reasons related to the derivation of the optimal bandwidth bgf’}. The distributions in Py o restrict
the degree of nonstationarity by requiring some smoothness of the local autocovariance. This
is intuitive since the optimality of bg%ﬁ is justified under smoothness locally in time. We remark
however, that, the optimality of b; r and K determined below holds over all distributions & € Py .
We show that the resulting optimal kernels are K7™ (-) and K3 (-) from Section 3. For any a € R?
consider the following inequality,

< (4.1)

32
a (MCWU (uo, k?)) al.

82
a’ <82ucg} (uo, k:)) a
We consider the following class of distributions,
Py, 2{P . P c Py, mg=0, and (4.1) holds Vk € Rand Vug € (0, 1)} .

Let Dy yq(uo) £ (a’(@zc%] (ug, k)/Ou?)a)? and Dy 17,0 (up) £ Yo @ (coy, (uo, 1)[cay, (uo, 1) +cay, (ug, I+
2k)|)a.

Proposition 4.1. Suppose Assumption 3.3 and /.1-4.3 hold. For any sequence of bandwidth
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parameters {bar} such that by — 0, we have

sup MSE (a7 (uo, k) a) = Eu (a/'er (uo, k) a — d'co (uo, k) a)’ (4.2)

PePy
1 1 2/ 52
Zb (/0 x K (x) dx) (82 d'co, (ug, k) a)

1 00
+ / K; (z)dz Y d (Q@U (uo, 1) [coy, (w0, 1) + oy (ug, 1+ 2]{:)]/) a
Tb27T 0 l

=—00

2

IA

1 1 e’} [e%s)
+ o / K3 (x)de Y > Kopavru (0, ho) + 0 (W) + O (1/ (borT))
2, 0

hi=—00 ho=—00

which is minimized for
o o — ) /5, _
037 (u0) = [H (K5™) Dy (u0)) 7 (F (K5™) (Dara (o) + Dy (uo))) " T2,

where
D37 (uo) Z Z Koy aViTuy (h1s 0, ha)

hi=—00 hg=—0c0
and K3** (z) = 62 (1 —2), 0 <z < 1. In addition, if {V;} is Gaussian, then Dz (uo) = 0 for all
Uy € (0, 1)

We now obtain the optimal K (-) and by 7 as a function of b3% (-) and K5 (-). For some
results below, we consider a subset of K defined by K1 = {K; (-) € K;| K (w) > 0Vw € R}
where K (w) = (2r) " [ Ki (z) e ™ dx. The function K (w) is referred to as the spectral window
generator corresponding to the kernel K (-). The set K contains all kernels K; that generate
positive semidefinite estimators in finite samples. K, contains the Bartlett, Parzen, and QS
kernels, but not the truncated or Tukey-Hanning kernels. We adopt the notation jT(bLT) =
jT(bLT, bar, Kap) for the estimator Jr that uses Koo (-) € Ky, bir and by = bgp; o(T~1/?)
where 5;?} = fol bo%y (u) du. Let J(bir) denote the estimator based on the QS kernel K1 (-).
We then compare two kernels K; using comparable bandwidths b;  which are defined as follows.
Given K, (-) € K1, the QS kernel K& (-), and a bandwidth sequence {b1r} to be used with the
QS kernel, define a comparable bandwidth sequence {by 7k, } for use with K () such that both

kernel /bandwidth combinations have the same maximum asymptotic variance over & € P when
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scaled by the same factor 7'b; rbe . This means that by 1 g, is such that

lim sup Tby rborMSEs (' (J7° (bir) — E (J2 (b)) + Jr) a)

T—o00 PePy
s ~
711_1)1010 ;él}g) Tbl Tbg TMSE} (CL (‘]T (bl,T,Kl) —E (JT (bl,T,Kl)) + JT) CL) .
This definition yields by Ky = = b1r/([ K7 (z)dz). Note that for the QS kernel K B (z) we have
bl,T,QS = bl,T since f (K?S) (m) dr = 1.

Theorem 4.3. Suppose Assumption 3.3 and 4.1-4.3 hold, fo \for (2) (u, 0) |[du < oo, and by — 0,
bg’TT — n € (0, 00). For any bandwidth sequence {byr} such that bor/brr — 0, nT/Tb%T — 0
and THS pbor — v € (0, 00), and for any kernel K, (-) € K\ used to construct Jy, the QS kernel
is preferred to Ky (-) in the sense that for all a € RP,

lim inf7by 702 ( sup MSE » (a'jT (b17.K,) a) — sup MSE4 (a'jjgs (b1.7) a))

T—o0 PePy PePy
4

= (| 1, 0) du)Q [ oy [K%,2 ([ 2tas) - (s5)

The inequality is strict if Ky (x) # K (x) with positive Lebesque measure.

> 0.

We now consider the asymptotically optimal choice of by r for a given kernel K (-) for which
Ki, € (0, 00) for some ¢, and given K3** and by. We continue to use a minimax optimality
criterion. However, unlike the results of Proposition 4.1 and Theorem 4.3, in which an optimal
kernel was found that was the same for any dominating distribution Py 5 and Py, respectively, the
optimal bandwidth b; r depends on a scalar parameter ¢ (¢) that is a function of &y in addition to
q. Let w,, m=1,..., p be a set of non-negative weights summing to one. We consider a weighted

squared error loss function

P

L(Jr, Jo) = D w, (J7" (bir) = T570)*.
r=1
A common choice is w, = 1/p for r =1, ..., p. For a given dominating distribution 2, define

:iwr (/ am (u, 0) du) /Zwr </01 frrat (u, 0) du>2, (4.3)

where a(") is a p-dimensional vector with the r-th element one and all other elements zero. For any

given ¢ (q) € (0, 00), let Py (¢) denote some set Py whose dominating distribution &7y satisfies
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(4.3).

Theorem 4.4. Suppose Assumption 3.3 and j.1-4.3 hold. For any given K (-) € K, such that
0 < Ki4 < oo for some g € (0, 00), and any given sequence {byr} such that bor/byr — 0,
Tbi% by — 7 € (0, 00), the bandwidth defined by

1
b = (20K7 .6 (q) Thyir/( / K3 (y) dy / K3 (x) da)) =1/,
0
1s optimal in the sense that,

liminfTBq/5<2q+”< sup EyL (Jp (bir), Jor) — sup EuL(Jp (b‘ip%),J(@,T)> > 0,
T=o0 PEPY(¢) PEPY(9) ’

provided [y, > 0 and f[(]qim > 0 for some r for which w, > 0. The inequality is strict unless
blT — b?PjE + O(T_4/5(2q+1)).

4.3 Data-dependent DK-HAC Estimation

In this section we show that the DK-HAC estimators based on data-dependent bandwidths with
similar form as 51,T and 52771 (cf. Section 2) have the same first-order asymptotic MSE properties
as the estimators based on optimal fixed bandwidth sequences b‘f?} and bgf’} that depend on the
unknown distribution Z.

We choose a parametric model for {a™'V;}, r =1, ..., p. We use the same locally stationary
AR(1) models as in Section 3, i.e., V" = a{""V,_; + u” with estimated parameters a\"” (-) and
g (). Let ) = ([} ay” (u)du, [, @ (u)2du,..., [yal) (u)du, [} G0 (u)*du), and 6% de-
note the probability limit of . We only consider distributions & for which 6%, exists. Construct
¢ (q) = ép (¢) as in Section 2 but using 6. The probability limit of ¢ (¢) is denoted by ¢g- (¢).

Let ¢ (-) be the value of ¢ (-) from (4.3) obtained when Z; is given by the approximating
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distribution with parameter %,. For some ¢, ¢ such that 0 < ¢ < ¢ < oo, define

Pys={P c Py : (i) S 0%, for some 0%, € © such that ¢ » (q) € [@, 5} for any ¢,

(i1) sup |a'To, . (k)a] < Cs|k|™ fork =0, £1,..., forsome Cs < oo,
u€(0,1]

forsomel! > max{2, (4¢+2)/(2+ ¢)}, foralla € RP with||a|| = 1,
where ¢isasin K3 and satisfying 8/¢ — 20g < 6, and ¢ < 11/2,
(i77) sup Varg,, (a’f’ (k) a) =0 (1/Tb3%'i) , and

k>1

So, T 4
(iv) limsup E » (S bgp} aT (k)a— aT o1 (k) a’) < Cy

for some Cy < oo with ng’T = {(b‘f%)_rJ somer € S(q, b, 1)},

where

S(g, b, 1) = (max{(b—3/4—¢/2)/(b—1), ¢/ (I - 1),
min {(6 + 4q) /8, 15/16 + 3¢/8}),

with b > 14-1/¢. The lower bound 0 < ¢ < ¢» (¢) eliminates any distribution for which ¢» () = 0.
For example, white noise sequences do not belong to Py 3 since then ¢ (¢) = 0. We discuss these

cases at the end of the section. Let
bl,@gz,T = (2qK12’q¢9* Tb;)p;’/ / K2 dy/ K2 dl’ 1/ 2q+1

denote the optimal bandwidth for the case in which &2, equals the approximating parametric

model with parameter 6%,. Let

LTM%J

Dyo(w)2 S der(uo, 1) [Er (uo, 1) + ér (uo, [+ 2Kk))a
l:_LT4/25J

where ¢p is defined as ¢}, , with V; in place of V},.

4
1nf{T/n3T m}( Y1/ (2a+1) ¢1/(2q+1)>
2

Assumption 4.4. (i) We have sup Eu o) D

P€Py,3

00, where q is as defined in K, a(q) < ¢ < 00, and nyr/T +n3r/T — 0, nlO/G/T — [cg, 00),
10/6 : e = -

nagp [T — les, 00) with 0 < ¢y, 3 < 00; (i) /Ty (u)(Day (u) — Doy (u)) = Op (1) for all

=0(1)asT—
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€ [0, 1]; (#i) Assumption 3.0-(v,vii) hold.

Any estimator ¢ based on standard nonparametric estimators of @\” (-) and 6 (-) satisfies
Assumption 4.4-(i). The following result shows that jT(BLT, @,T) has the same asymptotic MSE
properties under & as the estimator jT(bLg@’T, B‘;p}) Since the asymptotic MSE properties of
estimators with fixed bandwidth parameters have been determined in Section 4.2, from this result

it follows the consistency of Jr (gl,T, by.r) and its asymptotic optimality properties.

Theorem 4.5. Consider any kernel K (-) € K3, q as in K3 and any Ky (-) € Ks. Suppose
Assumption 3.3 and 4.1-/./ hold. Then, for all a € RP,

TR/520Y) g — 0.

L@GPU73

MSE@ (a'jT (BI,T; /b\Q’T) CL) — MSE@ (a,jT (blﬁg,T; E(Q)ZE) a)

Theorem 4.5 combined with Theorem 4.1 and Theorem 4.2-(iii) establish upper and lower
bounds on the asymptotic MSE. Results on asymptotic minimax optimality for data-dependent
bandwidths parameters can be obtained using Theorem 4.1, Theorem 4.2-(iii) and Theorem 4.4-4.5.

It remains to consider the case ¢» (-) = 0. When this occurs, QAﬁ_l () is O ((T/n3r)* +nar).
Under the additional condition ((T/n3r)? + nor)/T*®> — O (1) in Assumption 4.4-(i) we have
51,T =0 (1). Thus, jT(ELT, 32,T) —Jr Z 0 also when the series is white noise. This is important
in applied work because often researchers use robust standard errors even when they are not aware

of whether any dependence is present at all.

5 Small-Sample Evaluations

We now show that the prewhitened DK-HAC estimators lead to HAR inference tests that have
good size proprieties when there is high serial correlation in the data. In fact, we know from the
simulations in Casini (2021) that the prewhitened proposed in this paper improves the size of tests
normalized by the DK-HAC estimators and that the power is similar to the non-prewhitened DK-
HAC estimators where the latter have, in general, superior power properties relative to traditional
LRV estimators. We consider HAR tests in the linear regression model as well as applied to the
forecast evaluation literature, namely the Diebold-Mariano test [cf. Diebold and Mariano (1995)]
and the forecast breakdown test of Giacomini and Rossi (2009).

The linear regression models have an intercept and a stochastic regressor. We focus on
the t-statistics t, = VT'(3) — Bor)) / j()g;) where Jyr is a consistent estimate of the limit of
Var(vVT(3 — ) and r = 1, 2. t; is the t-statistic for the parameter associated to the intercept

while 5 is associated to the stochastic regressor. Two regression models are considered. We run a
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t-test on the intercept in model M1 whereas a t-test on the coefficient of the stochastic regressor

is run in model M2. The models are,

v =B + 6+ Pz, + e, t=1,.... T, (5.1)
for the t-test on the intercept and

ye = B + (B + 8)x, + ey, t=1,..., T, (5.2)

for the t-test on 662) where 0 = 0 under the null hypotheses. In model M1 we set ﬁél) = 0,
5(()2) =1,z ~A(1,1) and €, = pees_1 + ug, p = 0.4, 0.9, uy ~ A (0, 0.7). Model M2 involves
segmented locally stationary errors: Bél) = ﬁ(()z) =0, 2y = 0.6 + 08241 + Uyy, Uy ~ A (0, 1)
and e; = prer—1 + ug, pr = max {0, 0.8 (cos (1.5 — cos (5¢/T)))} for t < 4T/5 and e; = 0.5¢;—1 +
ug, up ~ 1i.d. A (0, 1) for t > 4T/5. Note that p; varies smoothly between 0 and 0.7021. Then,
Jxr = (X'X/T)" Jp(X'X/T)" where X; = [1, z,].

Next, we move to the forecast evaluation tests. The Diebold-Mariano test statistic is defined
as tpy = TV%d/ jallz °r, where dy is the average of the loss differentials between two competing
forecast models, jdL,T is an estimate of the LRV of the loss differentials and 7,, is the number of
observations in the out-of-sample. Throughout, we use the quadratic loss. In model M3 we consider
an out-of-sample forecasting exercise with a fixed forecasting scheme where, given a sample of T’
observations, 0.57" observations are used for the in-sample and the remaining half is used for
prediction. To evaluate the empirical size of the test, we specify the following data generating
process and the two forecasting models that have equal predictive ability. The The true model for
the target variable is given by y; = 6(()1) —I—BSQ):UE% +e; where x@l ~iid. A (1, 1), e, = 0.8e,-1 +uy
with u; ~ i.i.d. A4 (0, 1) and we set B((]l) =0, ﬂ(§2) = 1. The two competing models both involve an
intercept but differ on the predictor used in place of x,go). The first forecast model uses x,gl) while

the second uses xiQ) where a:ﬁl) and :L‘EQ) are independent i.i.d. .4 (1, 1) sequences, both independent

from xgo). Each forecast model generates a sequence of 7 (= 1)-step ahead out-of-sample losses Lgi)
(i=1,2) fort =T/2+1,...,T — 7. Then d; = L'® — LY denotes the loss differential at time
t. The Diebold-Mariano test rejects the null of equal predictive ability when (after normalization)
dy, is sufficiently far from zero.

Next, we specify the alternative hypotheses for the Diebold-Mariano test. The two competing
forecast models are as follows: the first model uses the actual true data-generating process while
the second model differs in that in place of x@l it uses a:§2_)1 = x,@l + ux, for t < 37'/4 and
xiz_)l =0+ x§0_)1 +ux, for t > 37/4, with ux, ; ~ i.i.d. .4 (0, 1). Evidently, the null hypotheses of
equal predictive ability should be rejected whenever § > 0.
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Finally, we consider model M4 which we use for investigating the performance of a t-test
for forecast breakdown [cf. Giacomini and Rossi (2009)]. Suppose we want to forecast a variable
y; which follows the following equation: 1; = él) + B(g?)a:t_l + 0z 1 1{t > T?} + e; where z; ~
iid. .4 (1.5, 1.5) and e; = 0.3e;_1 + u, with u; ~ i.i.d. .4 (0, 0.7), 8" = P =1 and T® = T
with A} = 0.85. The test of Giacomini and Rossi (2009) detects a forecast breakdown when the
average of the out-of-sample losses differs significantly from the average of the in-sample losses.
The in-sample is used to obtain estimates of ﬁél) and BSQ) which are in turn used to construct
out-of-sample forecasts §; = 8" + B 2,_1. The test is defined as tSR £ T'/?SL/ jé/LQ where
SLE T S 1 SLipr, SLiyr is the surprise loss at time ¢ 4+ 7 (i.e., the difference between the
time t + 7 out-of-sample loss and in-sample-average loss, SLyy, = L;1r — Lyy-, T, is the sample
size in the out-of-sample, 7T}, is the sample size in the in-sample and Jsr is an HAC estimator).
We consider a fixed forecasting scheme and 7 = 1.

We consider the following DK-HAC estimators: jT,pW,SLS = fTJ)W as discussed in Section 2,
J1 pw.1 Which uses prewhitening with a single block [ny = T in (2.4)] (i.e., stationary prewhitening),
jT,pW,SLS,u which uses prewhitening involving a VAR(1) with time-varying intercept [i.e., with fi; in
(2.4)]. The asymptotic properties of jTpr,SLS,M are the same as those of jT7pW,SLg since [i; plays no
role in the theory given the zero-mean assumption on {V;}. However, it leads to power enhance-
ment under nonstationary alternative hypotheses. The asymptotic properties of jT,pWJ follows as a
special case from the properties of JATvaVSLS. Weset np =nopr =ngr = T?2/3. For the test of Giaco-
mini and Rossi (2009) we do not report the results for j;an,l because the stationarity assumption
is clearly violated under the alternative. We compare tests using these estimators to those using
the following estimates: Andrews’s (1991) HAC estimator with automatic bandwidth; Andrews’s
(1991) HAC estimator with automatic bandwidth and the prewhitening procedure of Andrews
and Monahan (1992); Newey and West’s (1987) HAC estimator with the automatic bandwidth as
proposed in Newey and West (1994); Newey and West’s (1987) HAC estimator with the automatic
bandwidth as proposed in Newey and West (1994) and the prewhitening procedure; Newey-West
with the fixed-b method of Kiefer, Vogelsang, and Bunzel (2000); the Empirical Weighted Cosine
(EWCQC) of Lazarus, Lewis, Stock, and Watson (2018). We consider the following sample sizes:
T = 200, 400 for M1-M2 and T = 400, 800 for model M3-M4. We set T,, = 200, 400 for M3 and
T,, = 240, 480 for M4. The nominal size is & = 0.05 throughout.

Table 1-2 report the rejection rates under the null hypothesis for model M1-M4. We begin
with the ¢-test in the linear regression models, i.e., model M1 with medium dependence (p = 0.4).
The prewhitened DK-HAC estimators lead to tests with accurate rejection rates that are slightly
better than those obtained with Newey-West with fixed-b and to EWC. In contrast, the classical
HAC estimators of Andrews (1991) and Newey and West (1987) are less accurate with rejection
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rates higher than the nominal level. The prewhitening of Andrews and Monahan (1992) helps to
reduce the size distortions but they still persist for the Newey-West estimator even for 7" = 400.
For higher temporal dependence (i.e., p = 0.9), using EWC and jT,pw,SLS,u yield oversized tests,
though by a small margin. The best size control is achieved using the Newey-West with fixed-b
(KVB), Jrpwa and Jp py sis-

For model M2, Newey-West with fixed-b and the prewhitened DK-HAC (jT’pw,h jT,pw,SLS, jT’pw, )
allow accurate rejection rates. In some cases, tests based on the prewhitened DK-HAC are superior
to those based on fixed-b (KVB). The tests with EWC is slightly oversized when T" = 200 but close
to the nominal level when 7" = 400. The classical HAC of Andrews (1991) and Newey and West
(1987), either prewhitened or not, imply tests with rejection rates well beyond the nominal level
T = 200.

Turning to the HAR tests for forecast evaluation, Table 2 report some striking results. First,
tests based on the Newey-West with fixed-b (KVB) have size essentially equal to zero, while those
based on the EWC and prewhitened or non-prewhitened classical HAC estimators are oversized.
The prewhitened DK-HAC allows more accurate test. For model M4, many of the tests have size
equal to or close to zero. This occurs using the classical HAC, either prewhitened or not and EWC.
The prewhitened DK-HAC estimators and Newey-West with fixed-b (KVB) allow controlling the
size reasonably well. Overall, Table 1-2 in part confirm previous power evidence and in part suggest
new facts. It is verified that in general Newey-West with fixed-b (KVB) leads to better size control
than using the classical HAC estimators of Andrews (1991) and Newey and West (1987) even
when the latter are used in conjunction with the prewhitening device of Andrews and Monahan
(1992). The new result is that several of the LRV estimators proposed in the literature can lead
to tests having size equal to or close to zero. This occurs because the null hypotheses involves
nonstationary data generating mechanisms. These LRV estimators are inflated and the associated
test statistics are undersized. This is expected to have negative consequences for the power of the
tests, as we will see below. The estimators proposed in this paper perform well in controlling the
size for all cases. They are in general competitive with using the Newey-West with fixed-b (KVB)
when the latter does not fail and in some cases can also outperform it.

Table 3-4 report the empirical power of the tests for model M1-M4. For model M1 with
p = 0.9 and M2 we see that all tests have good and monotonic power. It is fair to compare tests
based on the DK-HAC estimators relative to using Newey-West with fixed-b (KVB) since they have
similar well-controlled size. Tests based on the Newey-West with fixed-b (KVB) sacrifices power
more than using the DK-HAC and the difference is substantial. The classical HAC estimators have
higher power but it is unfair to compare them since they are often oversized. A similar argument

applies to using the EWC.
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We now move to the forecast evaluation tests. For both models M3 and M4 we observe several
features of interests. Essentially all tests proposed experience severe power issues. The power is
either non-monotonic, very low or equal zero. This holds when using the classical HAC estimators
of Andrews (1991) as well as Newey and West (1987) irrespective of whether prewhitening is used,
with the EWC and the Newey-West with fixed-b (KVB). The only exceptions are tests based
on the Newey-West’s (1987) and Andrews’ (1991) HAC estimator with prewhitening in model
M4 that display some power but much lower compared to using the prewhitened DK-HAC. The
latter have excellent power. The reason for the severe power problems for many of the previous
LRV-based tests is that models M3 and M4 involve nonstationary alternative hypotheses. The
sample autocovariances become inflated and overestimate the true autocovariances. From Casini
et al. 2021 , this issue becomes more severe as § increases, which explains the non-monotonic
power for some of the tests, with tests based on fixed-b methods that include many lags suffering
most. The double smoothing in the DK-HAC avoids this problem because it flexibly accounts for

nonstationarity. The key idea is not to mix observations belonging to different regimes.

6 Conclusions

We used restrictions on nonstationarity in the form of segmented local stationarity to derive MSE
bounds for LRV estimation. The new bounds are sharper and more informative than those deri-
ved previously. They also show how nonstationarity in influences the bias-variance trade-o. We
used them to construct new data-dependent methods for the selection of bandwidths for recently
proposed DK-HAC estimators.We derived asymptotic results for the DK-HAC estimators under
general nonstationarity, including optimality of bandwidths and kernels. In order to improve the
rejection rates of HAR tests normalized by DK-HAC estimators we introduced a novel nonpara-
metric nonlinear VAR prewhitened LRV estimators and we discussed its large-sample properties.
Unlike previously suggested prewhitening procedures, our prewhitening method is not sensitive
to estimation error induced by nonstationarity in the whitening step. In a simulation study, we
find that overall the new prewhitened DK-HAC estimators lead to tests with better properties
than previous LRV estimators. It allows tests with empirical size close to the nominal level under
the null hypothesis and higher power functions that, in particular, are monotonically increasing
as the alternative hypothesis gets farther away from the null specification. Computer packages in

Matlab,R and Stata that implement the methods in the paper are available online.
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A Appendix

A.1 Tables

Table 1: Empirical small-sample size of ¢-test for model M1-M2

ML, p = 0.4 ML, p=0.9 M2
a=0.05 T=200 T=400 T=200 T =400 T =200 T =400
Jr, QS, prew 0.054 0.045 0.085 0.065 0.061 0.053
Jr, QS, prew, SLS 0.052 0.043 0.086 0.051 0.065 0.054
Jr, QS, prew, SLS, p 0.049 0.048 0.103 0.092 0.063 0.054
Andrews 0.082 0.065 0.162 0.118 0.095 0.050
Andrews, prew 0.063 0.057 0.104 0.083 0.077 0.048
Newey-West 0.114 0.090 0.351 0.272 0.138 0.057
Newey-West, prew 0.075 0.064 0.110 0.077 0.090 0.059
Newey-West, fixed-b (KVB)  0.058 0.056 0.091 0.066 0.069 0.052
EWC 0.058 0.055 0.149 0.113 0.071 0.048

Table 2: Empirical small-sample size for model M3-M4

M3 M4
a =0.05 T=400 T =800 T =400 T =800
jT, QS, prew, SLS 0.065 0.060 0.071 0.066
fT, QS, prew, SLS, u 0.065 0.061 0.077 0.067
Andrews 0.082 0.073 0.000 0.000
Andrews, prew 0.080 0.074 0.005 0.000
Newey-West 0.080 0.074 0.000 0.000
Newey-West, prew 0.078 0.073 0.000 0.000
Newey-West, fixed-b (KVB) 0.002 0.002 0.074 0.061
EWC 0.080 0.074 0.018 0.022
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Table 3: Empirical small-sample power of t-test for model M1-M2

M1 M2
a = 0.05, T'= 400 0=05 =1 =2 6=01 §=02 6=04
Jr, QS, prew 0.344  0.807 1.000 0.387  0.889  1.000
jp QS, prew, SLS 0.378 0.787 1.000 0.330 0.813 1.000
Jr, QS, prew, SLS, u 0.463 0.849 1.000 0.347  0.833  1.000
Andrews 0.430 0.864 1.000 0.450 0.922 1.000
Andrews, prew 0.360 0.812 1.000 0.433 0.911 1.000
Newey-West 0.630  0.958 1.000  0.511 0.938 1.000
Newey-West, prew 0.363 0.811 1.000 0.443 0.911 1.000
Newey-West, fixed-b (KVB)  0.274  0.655 0.980 0.329 0.758 0.990
EWC 0.436 0.886 1.000  0.392 0.890 1.000
Table 4: Empirical small-sample power for model M3-M4
M3 M4

a =0.05, T =400 0=05 =2 =6 6=05 d=1 6=2

Jr, QS, prew, SLS 0.495  0.920 1.000 0.613 0.923 1.000

Jr, QS, prew, SLS, u 0.498  0.940 1.000 0.663 0.957 1.000

Andrews 0.158  0.014 0.000 0.000 0.043 0.073

Andrews, prew 0.224  0.056 0.000 0.351 0.942 0.952

Newey-West 0.179  0.302 0.587 0.019 0.821 1.000

Newey-West, prew 0.137  0.014 0.000 0.003 0.278 0.722

Newey-West, fixed-b (KVB)  0.059 0.008 0.000 0.000 0.000 0.000

EWC 0.087  0.018 0.000 0.062 0.000 0.000
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LONG-RUN VARIANCE ESTIMATION UNDER NONSTATIONARITY

S.A Mathematical Appendix

In some of the proofs below /3 is understood to be on the line segment joining B and By. We discard the
degrees of freedom adjustment 7'/ (T' — p) from the derivations since asymptotically it does not play any
role. Similarly, we use T'/ny in place of (T' — nr) /ng in the expression for I, (k) and T’ (k). We collect
the break dates in T = {17, ..., T, }.

S.A.1 Proofs of the Results in Section 3
S.A.1.1 Proof of Theorem 3.1
Let

T-1

j;’ = fi‘: (691,T7 b92,T> 2 Z K (bel’Tk) I (k)7
k=—T+1

where T* (k) £ LS ZLZG”TJ & (rnp/T, k) and

[ BT (ST 02 0
cp (rnr /T, k) = Tby )L 5T gox (D —(sHk/2)V/T\ s o 1 < (S.1)
( 2,T) ZsszJrl 2 boy, T s+kVs o <

with XA/S* = VS*(B) where B is elongated to include /T.,j (j=1,...,pa). Define j} as equal to j} but with
Vi =V =04, A jViej in place of V¥ and define J7 as equal to Jr but with V;* in place of V; (8o). The
proof uses the following decomposition,

~

o 91 = (i T35) + (1 Ji0) + (3 1) 52

where J5p = T7! ZZ:pAH ZtT:pAH DE(VV)Dj, and J;B is equal to J7. p but with D, in place of
Ds.

Lemma S.A.1. Under the assumptions of Theorem 3.1-(i), we have

~

Jr (bg, 15 by, 1) — J1 = op (1) (S.3)

Proof. Under Assumption 3.2, || fol 5O (u, 0)|| < oo where f* is defined analogously to fp but with
Dy =1 for all s. In view of K19 = 0, Theorem 3.1-(i,ii) in Casini (2021) [with ¢ = 0 in part (ii)]
implies j{ﬁ — J7 = op(1). Note that the assumptions of the aforementioned theorem are satisfied by
{V*} since they correspond to Assumption 3.1-3.2 here. Noting that jq’i — j} = op (1) if and only if
a j;a —d j{'}a = op (1) for arbitrary a € RP we shall provide the proof only for the scalar case. We
show that JrTTbgl,T(ji'i — J&) = Op (1). Let J& (B) denote the estimator that uses {V;* (3)} where 3 is
elongated to include A.; (j =1,..., pa). A mean-value expansion of Jx(B)(= Jx) about Sy (elongated
toinclude A.; (j=1,..., pa)) yields

S 9 ~ _
vnrbe, r(Jp — Jr) = bel,Taiﬂ,J;(ﬁ)\/ﬁ(ﬁ — fo)
T-1

s S K (b k) T (k) psv/r (B — fo), (5.4

k=—T+1 op'

S-1
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for some /3 on the line segment joining B and fy. Note also that ¢*(rnr /T, k) depends on [ although we
have omitted it. We have for k > 0 (the case k < 0 is similar and omitted),

Ha@ (rnz/T, k)H’ﬁ:é (S.5)
Tbo, 1) - r+1)nT—(s+k/2)>
| =t 5%1 ’ ( Tbo,,r
* * a * *
< (v <ﬁ>a—ﬁ,vs () + Vi (B) Ve ©))] [
L (et Dy (st k) v
_ T nr — 1S
<2 ((Tbez,T) 1;@( ;bGQ,T ) Ssglfs%p (Vs (ﬁ))Q)
d (r+1)nr— (s +k/2) o 2\ /?
T — *
(T% S (D A | )

=0p (1),

Markov’s inequality to each term in parentheses; also sup,>; Esupg ||V (8 ) B2 < under Assumption

(Tbg, 1)~ Z K5 (((r+1)ny — (s +k/2)) /Thg, 1) —>/ K2 (z)dz < oo. (S.6)
s=k+1

Then, (S.4) is such that

be,,r Z K (bg, 1, k) 8,6” T (k) ’5:3@(5—5@
k=T+1
T-1 T/nT
=bo,r Y, Ki( bal,Tk Z Op (1
k=—T+1
=0Op (1),

where the last equality uses by, 7 31— 1 K1 (bg, 7k)| = [ |K1 (x) |do < oo. This concludes the proof of
the lemma because \/nrbg, 7 — oo by assumption. [

Lemma S.A.2. Under the assumptions of Theorem 3.1-(i), we have
T5 (boy 0, Yoy, 1) = T (B s D) = 08 (1). (8.7)
Proof. Let Sp = {b;l TTJ and

r € (max {(12b — 10g — 5) /12(b—1), (b—1/2—¢q) /(b—1), ¢/ (I — 1)}
min {(10q + 17) /24, (3 + 2q) /4, 5¢/6 + 5/12, 1}).

S-2
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We will use the following decomposition,

T (B0 Bz ) = T (boy v, boy,0) = (T (Bl Bor) = T (bou,rs Bir) ) (S.:8)
+ (T (borirs B5.0) = T (Bo 7 boa.1))

Let Ny 2 {-Sp, =Sr+1,...,—1,1,..., 87 —1,8r},and No = {-T +1,..., =Sy — 1, Sp+1,..., T —1}.
Let us consider the first term above,
Jr ( 17 §T) —Jr (bel,% b;,T) (S.9)
= > (K1 (bipk) = Ko (b, rk)) T (k)
keNy
+ 30 Ky (bigk) T (k) = 3 K (bo, k) T ()
kEN, kEN,

£ Ayr+ Aor — Asr.

We first show that Ay 7 0. Let A1,1,7 denote A; 7 with the summation restricted over positive integers
k. Let ny = inf {T/ngyT, . /ngyT}. We can use the Liptchitz condition on K () € K3 to yield,

Ar1r] < %T: Co b1 = boy o | e [T ()| (S.10)
k=1

< C[3p (@) - 6} (Gp (a) g0 ) (1) Wq*”zk ™ (k

for some C' < co. By Assumption 3.6-(i),

- ~ —1/(2¢+1)
‘¢D (q>1/(2q+1) _ q%i(?qﬂ)‘ (¢D () ¢9*) = Op(1).

Using the delta method it suffices to show that Byt + Bar + B3 ﬂ 0, where

Bir = (TEQT) /GatD)

Zk
Zk

By = (1i52) " S kim0

o™ (k) — T* (k)’ (S.11)

BZT _ (TBS,T) /(2¢+1)

I (k) = I (k)|

with Tk (k) £ (ng/T) Zg{)nﬂ c* (rnp /T, k). By a mean-value expansion, we have

1/(2q+1)

Bir < (Thiz) (S.12)

1/2Zk‘(wr* ) oo B)W(B—ﬁo)

S-3
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)—1/(2q+1) (Tb )27"/(2q+1) n;l/z sup

< C (Thyy
k>1

D)l ﬁHMHﬁ o

02,1
since 7 < (10g + 17) /24, and supg>, || (9/08) T* (k) | ;_3|| = Op (1) using (S.5) and Assumption 3.3-(ii,jii

|33l = O
(the latter continue to hold for {V;*}). In addition,

E (Bg,T) <E ((TEZ,T) B Z Z kj

k=1j=1

I (k) = I (k)|

ORI u)\) (5.13)

< (TBET) e S zlill) Tb2 Var ( (k:))
< (TA;T) /e (TEQZ’T)M/@QH) sup T’ Var ( (k:))

k>1

o~ —2/(2q+1)—1
< (bsr) /D T2/ Ce) AT /ARED sup Ty - Var (T (k)) — 0,
k>1

given that r < (34 2¢) /4 and supy>, T5§’TVar(f‘*(k)) = O (1) by Lemma S.B.5 in Casini (2021) that
also holds with T* (k) in place of T (k). Next,

~ 1/(2q+1)
Byr < (Thsr) Sr Z % (k (S.14)
~ 1)/(2g+1
< (TbS,T) (r=1)/(2q+ )O[P (1) = 0,

using Assumption 3.2-(i) since » < 1. This gives Ajp o Next, we show that Asr £ 0. Let
A1 1= L7+ Lo + L3 7, where

L= Y Ky (Bh) () - (). (8.15)

k=Sp+1

Loy = Tz Ky (B ok) (0" (k) = D5 (k). and
k=Sr+1
T—-1

Lsp= Y. K (BT,T]C) L7 (k).

kZST+].

We apply a mean-value expansion and use /n7(3 — fg) = Op (1) as well as (S.5) to obtain

(S.16)

Ll =i S ¢ (k) | (8((;? <k>) oz (B - o)

kZST+1

T-1
0 ~ ~
_ —1/3+4b/5(2q+1) Z - T _ (A

_ —1/3+4b/5(2g+1)+4r(1-b)/5(2g+1)

(55T <k>) o_svir (B - )

_ T*1/3+4b/5(2q+1)+4r(17b)/5(2q+1)O (1) Op (1) ’
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which converges to zero since r > (12b — 10g — 5) /12 (b — 1). Next,

T—1 = b~
>> O (Birk) | (k) — T (B)] (5.17)
k=S7+1
T—-1
= 1 (4K 00 (q))b/ Q4D b 2g41)-1/2 (B ) Vo172 ( 3 kb) VT o [F (k) — T ()|
k=St+1

Note that,

T-1
E (Tb/(2q+1)—1/2 (gng)b/(ZqH)flm > "“’_b\/@

k=St

I (k) — % (k)‘) (S.18)

2
< T2b/(2¢+1)~1 (5; )Qb/ 2g+1)—1 ( Z L ) (1)

k=St
— 72b/(2q+1)~1 (g;j) 2b/(2q+1)*15%(1—b)0 (1) = 0,

sincer > (b—1/2—¢q)/(b—1) and T/l;z’TVar(f‘*(k)) = O (1), as above. Equations (S.17)-(S.18) combine
to yield Lo %0, since ¢p (g) = Op (1) by Assumption 3.6-(i). Let us turn to Lg 7. We have,

T-1 % T-1 nr [T'/nr]
> Ei(bigk) TRk < X T Y |¢ (rme/ T, B)| (S.19)
k=57+1 k=Sr+1 r=0

T-1

< Z sup |c* (u, k)| — 0.
k=Sp+1 uE[O,l]

Equations (S.16)-(S.19) imply As 7 £ 0. An analogous argument yields As 7 £ 0. It remains to show
that (jT(bel,T, 5§7T) - jT(bel,T, bo, 1)) 5o Its proof is the same as in Theorem 5.1-(i) in Casini (2021)

which can be repeated given the conditions n;1/2/(5iT) — 0,7 < 5¢/6+5/12,and r > (b—1/2—q)/(b—1).
0

Lemma S.A.3. Under the assumptions of Theorem 3.1-(ii), we have

\/Tbo, 7o, v (T3 (bay 0, by 1) = J7) = Op (1).

Proof. Write

\/Tbo, b, T (j:? (b, 15 bo,,T) — J?) = \/Tbo, 1bo,, T (j? (bo,.15 bo,1) — J7 + J7 — J:?) :

Applying Theorem 3.1-(ii) in Casini (2021) with V* in place of Vs, we have \/Tbg, 10p, 7(J5—J5) = Op (1).
Thus, it is sufficient to show /T'bg, 7bg, 7(J7(be, 1, be, 7)—J7) = op (1) . A second-order Taylor expansion

gives

\/ Tbo, o, (5 JT)_[V\:;ZE’ bo, aﬁ/ (ﬁo)l\/ﬁ (8- 8)

S-5
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+ v (5 - o) be T 3585/ *(5)1\/%(3‘50)

& Gy (5= o) + 5 (5= o) By (3 ).

Using Assumption 3.4-(ii),

T, k)
Haﬁaﬁ' (rnz/ H‘
r+1)nr —(s+k/2)) /T) ( 0?
(Tbo, ) K V@V
- szk;rl 2( bo,, Opop’ ’ 6=5
=0p(1),
and thus,
/2 71 2
Tbe, Tbe, T 0
[Hrll < (21> | K1 (g, TF)| Sup (k)H
ni k::;-&-l 1 9Bop’
/2 71
T
< (b”””> > |Kq (bo, k)| O (1)
nr k=—T+1
Tho, 1/2 T—1
S( 2b2’ ) bo, 7 Y. K1 (b, rk)| Op (1) = 0p (1),
Y., T k=—T+1

since Tbg, 1/(n%bs, ) — 0. Next, we want to show that Gr = op (1). Following Andrews (1991) (cf. the
last paragraph of p. 852), we apply the results of Theorem 3.1-(i,ii) in Casini (2021) to j} where the
latter is constructed using (V*;, 9V;* /95 — E(0V;*/98)) rather than just with V;*. The first row and
column of the off-diagonal elements of this Ji_’ﬁ (written as column vectors) are now

T-1 ny T/nr
A £ K1 (b, 7k) —
1 k:zT:H 1 (bo, Tk) T ;} Thoyr
T
x K VilaaVemn —E{55Vs
> b o5~ F a5
. T-1 nr T/nr 1
Ay = Ky (bo, 7k) =
2 k:;H 1 (bg, Tk) T T;) Thor
T
1 — 2))/T
.S K;<<<’”+ )nr — (s +K/2)) / )( e (a ))V
s=k+1 L% o " o8~
By Theorem 3.1-(i,ii) in Casini (2021) each expression above is Op (1). Given,
T/nT
VI'b V1I'b 1
Gr < 225 oo e (Ar+ o) + 225 o, F Y K (boy k) - >~ =
Vi k—fTJrl r=0 * 02,7
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) f:A@(“T+1”W‘*5+kﬁ”/T)Muf+Vin(é9wﬁ\

s=k+1 Do, op
(685 )

W/Tb
02’ \/bo, 7 (A1 + A9) +A35up
and the fact that T'bg, 7bg, 7/n7 — 0 it remains to show that As is op (1). Note that

)y - Ty, -1  T-1 2 T/nr T/nr
IE(A3) <—=bir Y., > |Ki(bg,1k) K (bs, 1i |4< ) > D
k_7T+1]*—T+1 r=0 b=0
ZZK (r+1)nr—(s+k/2))/T
Tbg2TTb927 o—11—1 2 b92,T
be, T ° ’

and that E (VXV;*) = ¢* (u, h) + O (I'"') uniformly in h = s — [ and u = s/T by Lemma S.B.1 in Casini
(2021). Since 3°52 _ o sup,eo, 1] I¢* (u, h)| < oo,

A

E(43) < 1 (bel,:r Tf K, bngk) /K2 dx/ Z *(u, h)|du = o(1).

nTbel,T k:—T—I—l h=—o00
This implies G = op (1) which concludes the proof. J

Lemma S.A.4. Under the assumptions of Theorem 3.1-(ii), we have

v/ Tboyzbo,r (73 (Bl Bz ) = T (bay s baoyr)) = 0w (1)

Proof. Let

r €(max{{{(—10+4q +24b) /24 (b— 1)}, {(b—1/2) / (b— 1)} forb > max (1 + 1/q, 4)},

{8 —4)/(b—1)(10g +5)}, {(b—2/3—q/3)/ (b—1)}forb > 1+1/q}, ¢/ (I - 1)},
min {16¢/48 + 44/48, 46/48 + 20q/48, 2/3 + q/3}),

and St = [b, " |. We will use the following decomposition

j% ( LT b2 T) B j; (bgy, 1, by, 1) = (j; (AT,T’ AZ,T) - JA% (bel,T, 8ET)) (S.20)
+ (j’il(: <b91,T7 E;T) — j\;i (b91,Ta b927T)) .

Let Ny 2 {-Sp, =Sr+1,...,-1,1,..., 87 —1,8r},and No = {-T +1,..., =Sy — 1, Sp+1,..., T —1}.
Let us consider the first term above,
780D (T (8 7, Bar ) — T (bousrs Br) ) (8.21)
— T8a/102e) ( K, (E’I,Tk‘) K (bgth:)) ™ (k)
keNy
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+ T8q/10(2q+1) Z K (AT,Tk) f* (k)
ke Ny

- T8q/10(2q+1) Z K (bﬁl,Tk) f* (k)
kEN2

£ Ayr+ Ao — Az

We first show that Aq 7 0. Let A1 1,1 denote Ay 7 with the summation restricted over positive integers
k. Let np = inf{T'/n3 r, \/a7}. We can use the Liptchitz condition on K (-) € K3 to yield,

|A1 17| <

B 7 = bo | &

0 (k) (S.22)

- | -~ —1/(2¢+1)
< Cnrp ‘¢D (q)"/ e d%f@qﬂ)‘ (¢D (q) ¢9*)

St
~ —1/(2q+1 ~

k=1

for some C' < oo. By Assumption 3.6-(ii), (7ix|ép (¢) — dg+] = Op (1)) and using the delta method, it

suffices to show that Byt + Bar + B3 L 0, where

St
~, \—1/(2¢+1) B e
Bir = <b2,T> T(8q 10)/10(2q+1)nT1 Z k

T (k) — T (k)| , (S.23)
k=1
N —1/(2¢+1) St
Byr = (b;,T) T(Sq—10)/10(2q+1)ﬁ;1 Z k|T* (k) — T5 (k)] | and
k=1
2\ TV Qe gy 10)/10(2¢41) <1 Sl «
B3 = ( 2,T) T np Z kL7 (k)|
k=1
By a mean-value expansion, we have
~, \—1/(2¢+1) L § N
Bir < (bZT) T I0/10Ca) f 12 Zk <35/F )l 5= ﬁ) \/W@ B ﬁo) (S.24)

Ny Np sup

7r ) VD g 2r/<2q+1> _
<C (b2,T> 7(8¢—10)/10(2¢+1) (Tb02,T> ~1,-1/2 s

%F* ) = 5H\/EH[3 50“

~ —142r)/(2q+1
< C’(b;T)( +2r)/(2¢+ )T(Sq—lO)/lO(2q+l)+27’/(2q+1) 1/3 sup

\% 0|53 vz |5 - 5] o

since 7ip /T3 — oo, r < 16¢/48 + 44/48, \/n7||B — Bol| = Op (1), and supys, || (9/08) T* (k) | 4_g =

Op (1) using (S.5) and Assumption 3.3-(ii,iii). In addition,

E (BS,T> <E <( 2T> 2/(2q+1) T(8q—10)/5(2q+1)7~1;2 %T: SZT kj

k=1j=1

[ (k) = T (k)|

I* (j) - T% <j>\) (.25)

~ —2/(2¢+1)—-1 ~
< (bé,T> /(2¢+1) T(Sq—lO)/5(2q+1)—2/3—1S§1_l sup Ty, 7 Var (F* (k))
E>1
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~ —2/(2¢+1)—1 ~

< (b;T) /(2¢+1) 7(8¢-10)/5(2q+1)~2/3-1 (Tb2’T)4r/(2q+1) i}iII)TbQ,TV?ﬂ" (F* (k:))

< T1/572/5(24+1) (8¢—10)/5(2¢+1) —2/3—1pdr / (2q+1) p—4r/5(2q+1) sup Tby 7' Var (f* (k)) 0,
E>1

given that supy, szTVar(f*(k)) = O (1) using Lemma S.B.5 in Casini (2021) and r < 46/48 + 20¢/48.
Assumption 3.6-(iii) and 332, k'~ < oo for [ > 2 yield

Bsr < g;}/@quI)T(&]—lO)/10(2q+1)ﬁ%1Cg Z 1 (S.26)
k=1
< T(—21—14(;,)/10(2¢;,+1)C3 i K0,
k=1

where we have used the fact that fip/T"/3 — oco. Combining (S.22)-(S.26) we deduce that Ay ;7 5o.
The same argument applied to A 7 where the summation now also extends over negative integers k gives

A7 Eo. Next, we show that Ay 7 Eo. Again, we use the notation Ay 7 (resp., Az 27) to denote Ag 7
with the summation over positive (resp., negative) integers. Let Ag 17 = L1717 + Lo + L3, where

| DrT/? -1 % R ~
Lyg = Ly + L8, = T8/ [ 5~ 7§ Ky (0 ok) (T (k) = T* (k) (S.27)
k=Sr+l  k=|DrT1/2|+1
| DrT'/? ] T-1
Log = Lig+ LBy =180 [ 3> Ty Ky (B k) (T (0) — T3 (1))
k=ST+1 k= LDTT1/2J +1
T-1 =
and Lyr = 784/10(2g+1) Z K, ( T,T’f) s (k).
k=Sr+1

We apply a mean-value expansion, use \/n7(3 — o) = Op (1) as well as (S.5) to obtain

DTT1/2

A | _ 8¢/10(2¢+1)—1/3 o “b|/ 0 =, B 5
| Lity| = /0 k_; C1 (i k) ‘(aﬁ/r (k)> PENCACEEY (S.28)
=S7+1
(o2 ;
_ 18q/10(2q+1)—1/3+4b/5(2g+1) | 9 ns 7 >
=T ! ! Z Cik (3ﬁ’r (k)) |5:5vnT (ﬁ /80)

kZST+1

_ 8a/10(2q+1)—1/3+4b/5(2g+1)+4r(1-b) /5(2+1)

(555" ) loavir (5 - )

= T84/10Ca+1)=1/3+4b/52¢+ 1) +4r(1-6)/524+1) O, (1) Op (1),

which goes to zero since r > (—10 + 4q + 24b) /24 (b — 1) with b > max{1 + 1/¢, 4}. We also have

T-1

L8| = psnoerns Sy (5 k) ‘ ( aaﬁ/ ™ (k)) s—zv/nr (B = 5o)

k=|DrT1/? |+1

S-9



ALESSANDRO CASINI AND PIERRE PERRON

T-1
_ 8a/10(2q+1)—1/3+4b/5(2g+1) 3 C1k7°

k=|DrT1/?|+1

(555 ) losvr (5 - o)

_ T8q/10(2q+1)—1/3+4b/5(2q+1)+(1—b)/2OP (1) E) 0,

(555" ) logvr (5 - )

— 784/10(2¢+1)—1/3+4b/5(2q+1)+(1-b) /2

given that 1 —b < 0 and b > 1+ 1/q. Let us now consider Ly 7. We have

/
A 8g—1)/10(2¢+1 o) X o
Ly | = TEEDA0CD STy (5 k) [T (k) - T (B)| (S.29)
k=Sr+1
b/(2¢+1) b/(2¢+1)-1/2 [pr7 ]
~ q _ ~ q - _
(2 o @) T i, >
k=St+1
X /T 7 [T* (k) = T ()]
Note that
b/ (g4 1)—1/2 | DrT1/? ] 2
£ | 78¢/10a+1)+0/(20+1)-1/2 (g;j,) ! S kU Tbs T (k) - T (k:)‘ (S.30)
k=Spr+1
2
b/(2q+1)—1/2 [P 1/2
< o/ e (G ) S kT Thy gy (Var (T (1))
’ k=S +1 7
[prTi2] -\
— 784/5(2q+1)+2b/(2g+1)—1 (g;be/(?q“)_l S k| o
’ k=S7+1

_ T8q/5(2q+1)+2b/(2q+1)—133% (2011 p20=0) 2005 (1) —

since r > (b—1/2) /(b—1) for b > 4 and TB’Q‘VTVar (f* (k)) = O (1) as above. Further,

T—1 _
I T
k=|DrT'/2|+1

I (k) = I (k)| (8.31)

- b/(2q+1) 1o [ \D/(2q+1)-1/2 =1 B
— (2qK12,q¢D (q)) T8a/10(2¢+1)+b/(2¢+1)~1/2 (bQ,T) Z Lt

k=|DrT1/?|+1
X \/TB’Q‘ T

I (k) — T (k)‘.
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Note that
T—1 ?
. \b/(2q+1)—1/2 - — |~
B | poa/moeer /o1 (5 ) /@at1)=1/ S KT [T (k) - T (8) (S.32)
k=|DrT1/2|+1
2
< T8/5(24 1) 42/ (2q 1)1 (g;’T)”’/ (et > BT (Var (T (k)))l/ ’
k=|DrT1/2 |+1
. 2
-1
— 78a/5(2q+1)+2b/(2q+1)—1 (E;T)%/(Zq—i-l)—l Z | o (1)

k=| DrT1/2 |+1

_ 78a/5(2q+1)+2b/(2+1) -1 (g; T)2b/(2q+1)—1 pXIH (-0 (1) 5 0,
since r > (80 —4) /((b—1) (10g + 5)) and TZQTVar (f* (k:)) = O (1) as above. Combining (S.29)-(S.30)
yields Lo 7 5 0. Let us turn to L3 7. By Assumption 3.6-(iii) and |K; ()| < 1, we have,

T-1
‘L3’T| S T8q/10(2q+1) Z C?,k?il S T8q/10(2q+1)035%1—l (833)
k=Sp
< C3T8q/10(2q+1)T*4T‘(l71)/5(2q+1) - 07

since r > ¢/ (I —1). In view of (S.27)-(S.33) we deduce that As ;1 % 0. Applying the same argu-
ment to Aso 7, we have Agr Eo. Using similar arguments, one has Ag 7 £ 0. Tt remains to show

that T8q/10(2q+1)(j}(bglj, %T) — j}(bghT, be,. 1)) % 0. The proof of the latter result follows from
the proof of the corresponding result in Theorem 5.1-(ii) in Casini (2021) with » < 2/3 4+ ¢/3 and
r>(®b-2/3-¢q/3)/(b-1).0

Proof of Theorem 3.1. We begin with part (i). Note that
j’; ( >{,Ta ;,T) - Jj*" = j\’; ( iT’ b%,T) — j/;: (691,T7 b@g,T) + j/; (691,T7 b02,T) — J,;: (834_)

By Lemma S.A.1-S.A.2 the right-hand side is op (1). It follows that the first term on the right-hand side
of (S.2) is also op (1) because the presence of Dj is irrelevant for the result to hold. We have,

1 &L R
Jrp =% > Y DEVI(VDY
s=patlt=pa+l

1 T Pa -1 pa

- T Z Z Ip o Z AD"S’j E ‘/8 - Z AD,S,j‘/:S—j
s=pa+1lt=pa+1 Jj=1 Jj=1

/

PA -1
X ‘/t* IP_ZADJZJ'
j=1
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. T T pa -1
SR (fp—zlAD,s,j)
]:

+
PA PA -1
Z AD,S,]V + Z AD sgV Z AD,s,] s—j V;f* Ip - Z AD,t,j
j=1

Jj=1 Jj=1 Jj=1

S|

1 T T PA -1 paA DA
== > > |2 Apsi| E((Vs—D_ ApsVs+ D Aps;(Vs— Vi)
j=1

s=pa+1lt=pa+1 Jj=1 Jj=1

pA -1
Vi L, —> Apy
j=1

T T pA 1,
T Yoo > B (Ve L= Apsi| D Aps;(Vs—Viy) (S.35)

/

X

Now note that the sum involving Vs, — V,_; has a telescopic form to a sum. Using the smoothness of
Ap,sj, we have that the sum from any s to T' is

bA -1 PA
Iy = Z Ap.s Z Apsj (Vs = Vsj) (S.36)
Jj=1 j=1
pA
+ | I, - ZAD,5+1,j ZAD o115 (Va1 — Vir1—j)

=1

Pa
+ (Ip— ZAD,TJ) ZAD 7 (Vo —Vr—j).

=1

For s # T (r =1,..., mg) local stationarity implies Ap s+1; = Aps;+ O (1/T). There are only a finite
number of breaks T (r = 1,..., mg) so that (S.36) is equal to

-1
pPA PA
(Ip -> AD,pA+1,j> ADpa+1paVr + (Ip -> ADJ’J) AprpaVr

J=1 Jj=1

mo PA -1 Y\
+ Z (Ip — Z AQTQJ) Z (AD,TTO,]‘ - AD,TTOHJ) Vo
j=1

r=1 j=1

A
=Car.

)
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LONG-RUN VARIANCE ESTIMATION UNDER NONSTATIONARITY

It follows that

/
1 T

-1
pPA

7 ZE (Car) |V (Ip - Z ADﬁt’j) — 0.
j=1

t=1

Altogether, this implies J7. R Jp. Using Assumption 3.7 and simple manipulations, the second term
on the right-hand side of (S.2) is op (1). Therefore,

Ty = Jr = (T — T 5)+ (J;ﬁ —Jip)+ (Jip = Jr) = op (1), (S.37)

which concludes the proof of part (i).
Next, we move to part (ii). Given the decomposition (S.2), we have to show

V00, 700, (Towir = T3, 5) = Op (1) (S.38)
Voo, xbo,r (T35 = Thp) = op (1) (3:39)
\/Tbo, o, (J3.p = Jr) = 0 (1). (S.40)

Equation (S.38) follows from

o, wb0,17 (T3 (b, bouiz) — J3) = 08 (1) (8.41)
\/m (j:? (AT,T» /l;;T) - j% (o, bQQ,T)) =op (1), (S.42)

since the presence of D, in XA/D*7S is irrelevant. Thus, Lemma S.A.3-S.A.4 yield (S.38). Given that

\/Tbo, 7bo, 7/ — 0, Assumption 3.7 and simple algebra yield (S.39). From the proof of part (i), it
is easy to see that the multiplication by the factor /Ty, 10, r in (S.40) does not change the fact that
this term is op (1). Therefore, we conclude that TSQ/IO(QQH)(fme —Jr) =0p(1).

We now move to part (iii). The estimator fT,pW is actually a double kernel HAC estimator constructed
using observations {VD,S}, where the latter is SLS. Thus, using Theorem 3.2 and 5.1 in Casini (2021) and
Assumption 3.7, we deduce that

lim MSE (Tbgl 0675 JowTs T, WT) — lim MSE (Tbgl oy ) Ty I WT). (S.43)
T— o0 ’ ’ ’ T— o0 ’ ’ ’
This implies that it is sufficient to determine the asymptotic MSE of Jr, ,,. Note that Jr , is simply a
double kernel HAC estimator constructed using observations {V};,}. It follows that {Vp t} is SLS and
thus it satisfies the conditions of Theorem 3.2 and 5.1 in Casini (2021) The same argument in Casini

(2021) now with reference to Theorem 3.1-(i,ii) yields

lim MSE (Tby, rbo, 1, Ji.p, Jr, Wr)
T—o00 ’

=WPMM%UUWWMM>WWUW#wmm)
0 0
1 1
+ /Klz (v) dy/K% (x) dz trW (Ip% — Cpp) (/0 Ip (u, 0) du) ® (/0 b (v, 0) dv) .
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The latter relation and (S.43) conclude the proof. OJ

S.A.2 Proofs of the Results in Section 4

In the proofs below involving ¢r (u, k), ¢r (u, k) and ¢ (u, k), we assume k > 0 unless otherwise stated.
The proofs for the case k < 0 are similar and omitted.

S.A.2.1 Proof of Theorem 4.1

We first present upper and lower bounds on the asymptotic variance of Jr. Let Var  (+) denote the
variance of - under .

Lemma S.A.5. Suppose that Assumption 4.1 holds, Ko (-) € Ko, by, bor — 0, np — oo, np/T — 0
and 1/Tby b — 0. We have for all a € RP5:
(i) for any K1 (*) € Kx,

lim sup 70y 7barVargy (a JTa) = hm Tb1 1ba rVar g, (a JTa)
T—o00 PePy

_ g / K2 (y) dy /O 1K22 (z) dz ( /0 1 F2y.a (u, 0) du> :

(i) for any K1 (-) € K14,

Th_r)rgo ]}éllf;LTbl Tba,rVar » (a JTa> = hm Tbl 1barVarg, (a JTa)

—sr [ K dy/K2 dac(/fo;a”u() )

Proof of Lemma S.A.5. Let Z; = o'V and co 1 (rng /T, k) = Egér (rnp /T, k). For any k > 0 and any
r=0,..., |T/nr|,

a (er (rnp /T, k) — coq (rnr/T, k)) a
( (Thar)” Z K3 ( rtdnr = (s k/2) /T> (ZsZs—k —E (ZsZs_w)) :

s=k+1 b2’T
For any k, j >0 and any r, b=0,..., |T/nr|,

sup |Ex (d' (¢r (rnr /T, k) — co 1 (rnr /T, k)) ad’ (er (bng /T, j) — co 1 (bnr /T, j)) a)|

PePy
(Thor)™ Z Z K2< T-i-l)nT—(S—k/Q))/T)K; (((b+1)nT—(l—j/2))/T>

s=k+1l=j+1 ba,r b2, 1

X (Ep (ZsZs 12121 j) — B (ZsZs 1) B (Z1Z1-5))|-

By definition of the fourth-order cumulant and by definition of Py,

gzsglg) |E (d' (¢r (rnp /T, k) — co 1 (rop /T, k)) ad’ (¢r (bnr /T, j) — cor (bnr/T, j)) a)|
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( ((r+1)ny — (s - k/2))/T> K3 (((b+ Dnr — (1 —j/2))/T>

ba %

‘(TbQT Z ZI@

s=k+11=j+1
< (B0 (2200 B (221-3) + Bip (220 B (ZurZig) + B (20215) B (Zi 20)
+ KPaV,s (=k,l—s,l—7—8)—Ep (Z;Zs_)E (ZlZl—j)

( r+1)ny — (s — k/2))/T> K <((b+ Dng — (I —j/2))/T>

bo ba, T

< (Tbyy)? Z Z K3

s=k+11l=j+1

X (a/FgU’S/T (s =1 ad Ty, sp(s—k—14+j)a+adTs, yr(s—1+j)adTp, sk (s—k—1)a

H:(—k,l—s,l—j—s))
< Eg, (d (¢r (rnp/T, k) — co, 1 (rnp/T, k)) ad’ (¢r (bng /T, §) — o, 1 (bnr /T, §)) a) (S.44)
LY & & (D nr = (5= k/2) /T o (b D nr — (1= 5/2)) /T
w2(iy) 2 2 (D g (e )
Ky (=k,l—s,1—j—s),

where the last inequality holds by reversing the argument of the equality and the first inequality.
By a similar argument,

Jlél;f) |E (a' (¢r (rnp /T, k) — cor (rnp /T, k)) ad’ (¢ (bnp /T, j) — cor (bnp/T, j)) a)]

>Egp, (d (¢r (rnr/T, k) — co, 7 (rnr /T, k)) ad’ (e (bng /T, j) — co, v (bng /T, j)) a) (S.45)

1 2 T T
+2<Tb27T> Z Z Ke(—k,l—s,1—75—5).

s=k+11=j+1

Let Jr i be the same as Jp but with |K; (-)] and |K» ()| in place of K (-) and Kj (-), respectively. Note
that K7 (1) € Ky (K2 () € K3) implies |K; (+)| € K1 (|K2 (-)] € K3). We have

. ) 17
Tlg%oTbLTbZTVMWU (a JTa)

< lim sup Tb;rberVary (a JTa>

T—oog¢c Py
T-1  T-1
= Aim sup Tbyrbar > Y Ki(birk) K (b))
TorePy k=—T+1j=—T+1
2 T/np T/np 2 T .

nr 1 rnp+1) — (s +k/2) L (np+1)—(1+75/2)
()L X () 2 m(! K

T) = 4= \Thar s=ht11=j+1 Tby,r Tbo T
x Ep (a/ (FS/T (k) —Ez (FS/T (@)) ad’ (FZ/T (k) —Eg (Fz/T (k)>) a)

T-1  T-1

< hm TblTbQT Z Z |K1 blT]{J)Kl (blT])|
k=—T+1j=—T=+1
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np 2 T/np T/np 1
(R x () 25
xEg, (o (Do (k) = Bz, (Tyr (1)) ad’ (Toyz (k) = Bz, (Tr (1)) ) a)
T-1 T-1

nr o T/nr T/np 1 2
+20im Thyrbor >, Y K3 blTk)Kl(blTJ)l(T) > D (Tb”)

k=—T+1 j=—T+1 r=0 b=0

() %

Tbo T Tby 1

K<n+ 1) - <s+k/z>>K;<<bnT+1>—<l+j/2>

K; ( r+ g — (s = k/2) /T) K; <<<b+ oy — (L= j/2) /T>‘

s=k+11=j+1 ba,r bo,1
Ke(—k,l—s,1—7—5)
= TIEI;OTbLTb?,TVM@U (a’JT,Ka> , (846)

where the last inequality uses (S.44). For K (-) € K 4, we can rely on an argument analogous to that
of (S.46) using (S.45) in place of (S.44) to yield,

hm Tb1 1baTVar g, (a JTa) > Tlgl;o /Zléllf; Tby by Vary (a JTa>
L

> TlgI;OTbLTbZTvaryL (a/jT,Ka> . (847)

By Theorem 3.1 in Casini (2021),
_ 1 1 2
Tlim Tby b rVarz, (a'JTa) = 8772/K12 (y) dy/ K2 (x)dx (/ [Py a (u, 0) du) , and (S.48)

B 1 1 2
Jim ThyrborVar, (¢ ira) = [ 1K WP dy [ Ka @) da ( | frate o>du> o (s49)
— 00 0 0

for w = L, U. Equations (S.46), (S.48) and (S.49) combine to establish part (i) of the lemma:

1 1 2
st [ K3 (o) dy /0 K3 (z) da < /0 f .0 (1, 0) du>

= lim TbLTbQ’TVaI'p}U (a' jTa>

< lim sup Tb; by rVargy (a JTa)
THOOJEPU

< hm Tbl Tbg TVar@U (CL Jr KCL)

= 872 /Kl dy/ K2 (x da;(/ f2y .0 (u, 0)d ) .

By a similar reasoning, equations (S.47) and (S.48) yield part (ii). O

Upper and lower bounds on the asymptotic bias of Jr are given in the following lemma. Let Jg, 7
be equal to J» 7 but with the expectation E4 replaced by Eg, , w = U, L.

Lemma S.A.6. Let Assumption 4.1 hold, K; (-) € K1, K> (-) € Ko, by, bor — 0, np — 00, np/T — 0,
1/Tbyrbar — 0, 1/Tb(117Tb27T — 0, nT/Tbcll,T — 0 and b%T/b(l]’T — 0 for some q € [0, 00) for which
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K4, ‘fo f@w o (u, 0)du| €0, 00), w=U, L. We have for all a € RP5:

(i) hm sup blT‘E}a JTa—aJ@Ta‘ = hm blT’Eo;:Ua Jra—d' Ja,, Ta’ = 27K; qu o and

PP
7) lim inf b4 ‘E/aJ a—aJdg a’zlimbi ‘IE a'Jra —a'Js a’zQwK (@) .
()T%O%P 17 [EaJr zra| = Hm by 5Ky a’Jr LT Laf2ya

Proof of Lemma S.A.6. We begin with part (i). We have,

lim sup blT ’Egm Jra —ad' Jp Ta’

T—>oo<]€p
T—1 _ T—1
!/ /

= Jimsup bt :;HKl (b,7k) B (T (k))a—k:;—ﬂaf’g)f (k) a
T-1 N T-1

= Jim sup by} > Ki(birk)dEy (T(k)a- > Ki(brk)aTor(k)a

€Py k=—T+1 k=—T+1
T-1 T-1
+ > Kilhirk)dTepr(k)a— > dTar(k)a
k=—T+1 k=—T+1

= lim sup blT |G, + Go,2.1| .-
T—)oogep

Let us first consider G » 7. Note that for k > 0,

a (E@ (f (@) —Tor (k)) a
o el T B ((r+ 1) nr — (s + k/2)) /T
Z S T <b2}K2 ( ) - 1) dEp (ViV]_ 1) a].

r=0 s—k+1 ba,r

Thus,

sup |a’ (Eg (f‘ (k:)) —Tor (k)) a‘

PePy
LT/nTJ T
Z Z T <52_}K2 (((7’+1) nr — (S+k/2)) /T> - 1) G/EQU (V;V;l_k) a’.

r=0 s=k+1 b2,T

By Lemma S.B.1 in Casini (2021), Eg, (VsV! ) = ¢(s/T, k) + O (T~1) uniformly in s and k. By the
proof of Lemma S.B.6 in Casini (2021),

sup |a’ (E@ (f (k:)) —Tor (k)) a‘

PePy
LT/nTJ
my (sz K2<“7"“)”T‘(3+’“/2”/T>—1)a/E%<VsVS’k)a

r=0 s=k+1 b2,T
1 1 2
ny 9 :
-0 (T) + 2b§,T/O 22K (x )dx/ ’ <agc(u k)) adu| +o (b7 ) +0 <Tb2,T> '
1T—>0and b%T/b — 0.

It then follows that lim sup by T\Gl 2T

T~>oo€/z€ Py
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Next, given that 1 — K (birk) > 0,

lim sup bi%‘G27W7T|

T—)oop)ePU
T—1
= lim sup b Ky (birk) -1 aT(@,T k)a
A, sup by g k=;+1( (b17k) — 1) (k)
T—1 N
— Tim pC _ g
= lim b5 > (1K (burk)) @By (T (k) a.
=—T+1
Write the right-hand side above as,
T-1 _ 1
Jm bt 3 (1-Ki(birk)d (E% (F(k))/o ey (u, k)du)a
k=—T+1
T—1 1
+ lim b} 7 > (1—-Ki(birk)d </ coy, (u, k) du) a.
T—00 k=—T+1 0

By Lemma S.B.1 in Casini (2021), the first term above is less than,

T-1
dmbg > (1-Ki(birk) O (171) =o0.
T k=TT

(S.50)

(S.51)

Thus, it remains to consider the second term of (S.50). Let w(z) = (1 — Ky (x))/|x|? for x # 0 and
w (z) = K4 for x = 0. The following properties hold: w () — Ky 4 as @ — 0; w (-) is non-negative and
bounded. The latter property implies that there exists some constant C' < oo such that w (z) < C for
all z € R. Recall that ]fol fg}iﬂ (u, 0)du| € [0, 00), w = U, L. Hence, given any £ > 0, we can choose a

T < oo such that fol > e k| (a'T 2, 4 (k) a)du < £/ (4C). Then, using (S.51), we have

lim sup biqT ‘GQ,T - 277K1,qfl(][f()1

T—)oogepU
T 1
<limsup Y |w(birk) — Ki4[k|"d (/ c(u, k) du) a

T 1
+2limsup Y |w(birk) — K1q] |[k|7d (/ c(u, k) du) a
0

<e.

This concludes the proof of part (i). The proof of part (ii) is identical to that of part (i) except that

] (a) : ) (@)
{;;I;U, 'z, . and f@wa are replaced by gzléllf;L, I'», . and fﬁ”L,a‘ Il

Proof of Theorem 4.1. Parts (i) and (ii) of the theorem follow from Lemma S.A.5-(i) and Lemma S.A.6-(i),

and Lemma S.A.5-(ii) and Lemma S.A.6-(ii), respectively. O

S-18



LONG-RUN VARIANCE ESTIMATION UNDER NONSTATIONARITY

S.A.2.2 Proof of Theorem 4.2

Lemma S.A.5-S.A.6 [with ¢ = 0 in part (ii)] implies Jp — Jp = 05 (1). Noting that Jp — Jp = 0 (1) if
and only if a 'Jra—d Jra = oy ) (1 ) for arbitrary a € R? we shall provide the proof only for the scalar case.
We first show that Ty T(JT — JT) = O (1) under Assumptlon 3.3. Let JT(B) denote the estimator
that uses {V; (8)}. A mean-value expansion of Jy(3) (= Jp) about By yields,

T-1

\FblT(JT_JT)_blT > Ki(birk) o

k=—T-+1 55’ (k) ls=pVT (B_ 50) ’ (S.52)

for some [ on the line segment joining B and fy. We have for k£ > 0 (the case k < 0 is similar and omitted)
(S.5)-(S.6). It follows that (S.52) is

T-1 o ~ N
bur Y Ki(burk) 550 (k) |5_VT (B - Bo)

k=—T+1 7 8B
T-1 T/nT
<bgr Y, K blTk ZOJ’ (1)
k=—T+1
=0y (1) ,

where we have used by 7 Z;{:—iTH |K1(b1.7k)| — [|Ki(z)|dz < oo. Given v/Thy 1 — oo, this concludes
the proof of Theorem 4.2-(i).

Next, we show that \/Tby r(Jr — Jr) = 0z (1) under the assumptions of Theorem 4.2-(ii). A
second-order Taylor expansion yields

\/Fl,T(jT*jT) = { blTaﬁ, (»30)} ﬁ(@*ﬁo)
# VT (5= ) | I () | VT (3 - )
éG%ﬁ(B—ﬂo)%—%ﬁ(@—ﬁo) HT\/T(B_BO>-

We can use the same argument as in (S.5) but now using Assumption 4.2-(ii), sot that

Haﬁaﬁ' T"T/T’“H’
(T X r+1)nT—(s+k/2))/T>< 92 V() V. >
1) S;ﬂ 2< o a5+ OV ||
=0Op (1),
and thus,
bir\Y? H
|Hr| < | — | K1 (b, k‘)lsup T (k)
A=(F) X Kbl o5
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AL T-1
<(%)7 X Kk 0 ()
k=—T+1

1 1/2 T-1
< b Ki(bi7k)|Op (1) = 1
< (Tbl,T> LTk:ZTH| 1 (b1,rk)[ Op (1) = op (1),
since Tby 7 — oo. Next, we show that Gy = op(1). We follow the argument in the last paragraph

of p. 852 of Andrews (1991). We apply Theorem 4.2-(i,ii) to Jr where the latter is constructed using
(V/, 0V;/9B' — E» (0Vi/0'))" rather than just with V;. The first row and column of the off-diagonal

elements of this Jr are now

T—1 T/nr 1

A 2 Ky (by k) 2L
' k:;“+1 I(LT)T gTbQ»T

y SZX;K; (((r—l—l)nT ;27(Ts+k/2))/T> V. (;BVH—E@ < 0 V)>

np
> Ki(birk)—= Y.
k=—T+1 T /= Thr

s K;<<<T+1>nT—<s+k/2>>/T> (aaﬁv _E}@ ))Vk

s=k+1 bQ’T

(1>

Aa

which are both O (1) by Theorem 4.1. Note that
T-1 T/nr

T
Gr < \/bir (AL + Ag) +/brr DY |Ki(birk)l % > Th
k=—T+1 r=0 * 92T

% XT: K;(((r+1)nT—(s+k/2))/T>’(VH/S JE (;}ﬁ )

s=k-+1 ba,r
5 (35v-)|

b1, (A] + A2) + Az sup
1<s<T

It remains to show that As is op (1). We have,

T—1 T-1 o T/nr T/ny

Es (A%)gbLT > Y K (hirk) Ky (bl,Tj)’4(T?> > >

k=—T+1j=—T+1 r=0 b=0

1 (r+1)npy—(s+k/2)/T
TbQTTbgT ZZKQ ( - bZ,T )

s=1[=1

x K3} <((b+1)nTb_2;l+j/2))/T> Ep (VsVI)I-
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Since & € Py, [Ex(VsVi)| < T gy 57l — s)|. Given 3252 o supye(o, 1] leoy, (u, h) | < 0o, we have

rbo 1 T4 0 h=—cc
(S.53)

from which it follows that G = 04 (1) and so /TbLT(jT —Jr) = 0% (1). The latter concludes the proof

of part (ii) because \/TbLTbZT(jT — Jr) = O (1) by Theorem 4.1.
Let us consider part (iii). Let Gr = o’ Jra — a/ Jra. We have,

lim sup Tbyrbar ‘MSE@ (a’fTa) — MSE » (a’jTa)‘ (S.54)
T—00 g PPy
= Th_{r;o ;SEU Tby b1 ’2Eg (a'jTa — alz]gr,TCL> Gr + Es (@%)‘

1/2 1/2
§ 2 lim sup TbLTbZTMSEE@ (a’JTa) sup TbLTbQ’TEy} (égw)
T—oo \ pepy, PEPy

+ lim sup TbyrbyrE % (GT>
T—o0 PePy

The right-hand side above equals zero if (a) limy o0 SUp pe p,, 701,702 TE gz(@;) = 0 and (b) limsupy_,
SUp we py, Ty 7by 7MSE 5 (a/ Jra) < oo. Result (b) follows by Lemma S.A.5-(i). A second-order expansion
yields,

2

9B0p

Gr = {8CLJT(BO) }(3—50)+;<B_ﬁ0)/[

a3 a'Jr (B) a] (- o) =GCrr+Gor,  (855)

where B lies on the line segment joining 3 and fy. Note that E,@(@?p) = E(@(éiT) + Eg(é§7T> +
2E 5 (G1 17Go,r). Thus, using Assumption 4.3,

sup Thirby 1By (Gi ) (S.56)
PePy

9
< Tby 1o rp? max. sup E» ( ya@ "Jr (Bo) a (/3(T) - 50”))
r<p pecpy op)

p’max sup Ez (Hl(r%\/f (5(7") - BéT)))Q

T Thir r<p pecpy

— 0,
and
sup Tbl Tbg T]E] (G2 T) (S.57)
/EPU
2
1Tb1 b2 1p? max sup Eg ‘B(T) - ﬁor) 672a/jT (B) al ™) — 5((]T)
4 r<p pcPy 8/8(”8[3(7")/

2
p?’max sup Eup (\/T‘B(’") )

Tb1 T <P pePy

- 8| HEVT|EO) - 6
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— 0.

Equations (S.55) to (S.57) and the Cauchy-Schwartz inequality yield result (a) and thus the desired result
of the theorem. [J

S.A.2.3 Proof of Proposition 4.1
For K> (-) € K, using the definition of &7 and the arguments in (S5.44),

Var g, (a'cr (uo, k) a)
< sup Varg (a'cr (uo, k) a)

PEePy
2
k/2)/T ~ -~ -
= sup Egp | |(Tho1)" Z K2< (Sb+ /2)/ )a’ (VSVSLIC—E,@ (VsVslk))a]
PePy s=k4+1 2, T
s+ k/2)/T « [uo—(U+3/2)/T
= sup Eyp (Thor) " Z ZK2< (b /2] >K2< - (b i/2)/ )
PePy s=kt+1l=j+1 2, T 2,T

a (‘N/ V’_k —E» (‘7 17'_ )) ad (f/ﬂz,_j —E» (‘Z‘Zl_j)) a
T Y | ( — =) /T) . <u —=4 /T>‘
s=k-+11=j+1 2,T 2T
x (a'Tygr(s—1)adTysr(s—k—1+j)a
+aTygr (s —1+j)aaTys (s =k =1 a+kpyavs (G, L =5, 1= j—s))
<Eg, (d' (er (uo, k) = Cay,1 (w0, k)) ad’ (er (uo, j) — Ty (uo, j)) @)

2 T T .
+2<Tb127T> YOy K;(((7'+1)”T_(3_k/2))/T>K§<((b+1)nT_(l_.7/2))/T>|

s=k+11=j+1 ba,r ba,1
X K@y ,aV,s (]7 [ — S, l _j - 3)
= Var g, (d'er (uog, k)a), (S.58)

where ¢r(ug, k) (resp. €z, 1(uo, k)) is equal to ¢p(ug, k) (resp. ca, v(uo, k)) but with |K3 (-) | in place
of K (). Since K5 (-) > 0 by definition, Proposition 3.1 in Casini (2021) implies

Var g, (a'cr (uo, k) a)

[ee]

1 1
- o /0 1 (@) de 3 o (e (un, D) e, (0, 1) + e, (w0, 14+ 20 ) a

=—0Q

1 1 0 0
+ Tbg;p/o K22 () do Z Z K2y ,aV,Tue (M1, 0, h2)

h1=—00 hg=—00

0 (b%,T) + 0 1/ (b2,rT))
= Varg, (a'er (ug, k)a). (S.59)
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Next, we discuss the bias. We have,

sup |Ez (a'er (uo, k) a — d’cp (uo, k) a)|

e@EPU,Q
1 — 2)) /T
= lim sup |(Tber)” Z Ky rne = (s+k/2)/ d'Ey (VsVI_p)a—d'cp (up, k) a
T—00pepy i ba, 1
Ly, [*, H o 2 1
< 2b27T/0 x“Ks () d:c/o @ 53 CPu (uo, k)aldu+o (bZ,T) +0 <T627T> , (S.60)

where the inequality above follows from (4.1). Combining (S.59)-(S.60), we have that sup ¢ p,, , MSE(a’cr
(ug, k)a) is equal to the right-hand side of (4.2). The same result holds for ¢r(ug, k) since the proof of
Theorem 4.2 and Py2 C Py imply that sup»cp,, MSE» (a’er(ug, k)a) is asymptotically equivalent to
SUp »e p,; , MSEw(a’er(uo, k)a). This gives (4.2). The form for the optimal by r (-) and K (-) follow from
the same argument as in Proposition 4.1 in Casini (2021). O

S.A.2.4 Proof of Theorem 4.3

If Tb??;lbg;f — v € (0, c0) for some ¢ € [0, o) for which K 4, ‘fol f((]q()z (u, 0)du| € [0, o), then by
Lemma S.A.5-(i) and Lemma S.A.6-(i),

hm Tb1 Tbg , 7 sSup MSEJ (CL JT (bl TK1) )
PEePy

QIWK%,q</01fz(fi(u, ) /K1 dy/ (Kz0 (x dfC(/ fua(u, 0)d )]

Assume ¢ = 2 so that T} pbyr — . Then, T3 1 r bar — v/([ K7 (y) dy)® and

Tby oo =Tbi 1K, bQ,T/K% (y) dy.

Therefore, given Ko < oo,

liminf T'by 7ba 7 | sup MSE (a’jT (b1,7.x,) a) — sup MSE (a'jjgs (b1,7) a)
T—o0 PePy PePy

2
— tyn? ( / 9 (,0) du) / (K, (@) da [K ([ wa) - (KSS)Q] -

The optimality of K?S then follows from the same argument as in the proof of Theorem 4.1 in Casini
(2021). O

S.A.2.5 Proof of Theorem 4.4

Suppose 7 € (0, co). Under the conditions of the theorem,

(Tb2,T)2q/(2q+1) = (7@ 4o (1))Tb1,7bo7.
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By Theorem 4.1-(i),

2q/(2q+1
lim inf (Tb, 1 @/t

T—o0

sup EgL (jT (b1,7) . J,@,T) (S.61)
PePy(é(q))

P
= lim inf (7_1/(2q+1) +o0 (1)) Tbyrber sup g w,MSE 2 (a(r)'JT (b1,7) a(T))
T—o0 PEPyY(9) p=1

P 1 ?
— 7—1/(2q4’1)47r2[z wr(’yKiq (/ fg;7a(r) (u, 0) du)

r=1 0
1 1 2
2 [ 1@ [ K3 ) ay ( | o . 0) du) )

The right-hand side above is minimized at ¥°** = (2¢K7 ¢ (¢)) ([ K7 (y) dy fol K2 (z) dx). Note that
~°Pt > 0 provided that foy.atm (u, 0) > 0 and f{gi’am (u, 0) > 0 for some u € [0, 1] and some r for
which w, > 0. Hence, {b; 7} is optimal in the sense that T b?q;f 1b2,T — P if and only if byp =
b‘f}’} + 0((Tby, )~/ 24+D). In virtue of Theorem 4.2-(iii), eq. (S.61) holds also when Jr(bi,7) is replaced

by jT(bLT). Thus, the final assertion of the theorem follows. [J

S.A.2.6 Proof of Theorem 4.5

The proof of the theorem uses the following lemmas.

Lemma S.A.7. Let K (), K2(-), {b1g,.17}, {So1}, quﬁ() and q be as in Theorem 4.5. Then, for all
acRP, (i)

2

-1

T84/520t)  qup Eu Z K (Bl,Tk>a’1A“(k:)a — 0;
Z€Py,s k=Sz r+1

(i)

So,T ?
TSQ/5(2Q+1) sup }E@ Z (Kl <b17Tk) - Kl (blﬁg,Tk)) (1/]._‘ (k) a — 0.
c@EPU’g k=1

Proof of Lemma S.A.7. First we prove part (i). We have,

T—1 2 1/2
(TSQ/5(2(1+1) sup E@ ( Z K1 (BLT]{:) a/f (k) a) ) (862)

Z€Py,3 k=So r+1

1/2

T-1 A . A\

< T8II/5(2(1+1) sup Ey Z K (bl,Tk;) (CL/F (k) a— alrgz7Ta>
Z€Pus k=S g p+1

1/2

2

T—1

+ T84/5(29+1) sup E» Z K; (bl,Tk) a/D@,Ta
YecPy3 k=S r+1
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£ Bir+ Bar.

Since |K1 (-)| <1 and |[a'T (k) al < a’(fo1 I, u (k) du)a, we obtain

1/2

2
T-1 1
Bog < | TS/5CHD gup E,—,;( > [K (burk)|of ( / F,@U,u(k)du> a) (S.63)
0

P€Py 3 k=S r+1

T-1 1
S TSQ/10(2q+1) Sup Z Sup a/ (/ FWU,’M (k) du) a
PEPyys k:SQ 41 u€[0,1] 0

< T8q/10(2q+1) sup Z Cgk l
WGPUg k= SL@ r+1

o
< O3, TP9/10CaHD gup / k-l dk
’ ,@GPU’g S@T

< 0371T8q/10(2q+1)521:§

— T8q/10(2q+1)+4r(171)/5(2q+1) -0

for some constant C3 1 € (0, 00), using the fact that infpep,, ¢ () > ¢ >0and ¢/ (I —1) <r. Let

|DrT2] 2, 1/2
Bl,l,T = T8q/5(2q+1) sup Egz Z K1 (/61711]{) a’l“gz,Ta
WEPU@ k:SgAT-f—l
2y 1/2
T A~
Biar = | TS5 sup K, YK (bLTk) dT oy ra
WGPU,iS k= LDTT1/2J +1
We have
(D272 ’
B}, <TSACHDS G Byl S o (BLTk) Thyp [T (k) a — a'T o p (k) a‘ (S.64)
:@EPU@, k:SQ,T+1
LDTTI/Q 2
< T84/5(24+1)—4/5+8b/5(2¢+1) sup Eup Tbngt a F )a — a,Fﬂ,T (k) a‘

WEPU,;; k= ng +1

2b/(2q+1)
<2qK1q /Kl dy/ K3 (x dx)

< Cha 784/5(24+1)—4/5+8b/5(2+1)

[DrTi/2] | Dyis2)

« sup Z Z k:_bj_bTBé)z,T (Vargz (a’f‘ (k) a) Var & (a/f (J) a)>1/2
PePy 3 k=So r+1j=Sz r+1
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[Dr72] -\
< Cl72T8q/5(2q+1)*4/5+8b/5(2q+1) sup Z b ngp% sup Var z, (a’f (k) a)
((}QGPU73 k?:ngl +1 ’ k;zl
T
[prv2]
< 0y oT89/5(2a+1)=4/5+8b/5(20+1) gy, Z Lt 0(1)

Z€Pus \ \ k=S5 r+1

< O 5T8/52a+1)=4/5+86/5(2g+1)=8(b—1)r/5(2¢+1) _,

for some constants 0 < C 2, C13 < 00, using the fact that (}E(q) < ¢ < o0, infyep,, 02 > ¢ > 0 and
r > 1.25. Using similar manipulations,

2
T
B%,Q,T < T8q/5(2q+1)74/5 sup Eg Z Ch (/51771](:) Tbgpth a P (k) a — aIP@,T (k) a‘
WEPU,S k= LDTT1/2J+1
(S.65)
T 2
< 01’2T8q/5(2q+1)—4/5+8b/5(2q+1) sup Z b 19) (1)

yEPU,S k— LDTT1/2J+1

<y 3T8‘1/5(24+1)*4/5+8b/5(2q+1)7(1;71) 0,

for some constants 0 < Cj2, C13 < oo and with ¢ satisfying 8/¢ — 20¢ < 6. Equations (S.62)-(S.65)
combine to establish part (i). We now prove part (ii). Using the Lipschitz condition on Kj (-), we get

Sa.T 2
Avp =T sup By | S (K (burk) = Ki (brg,rk)) T (k) a (S.66)
L@EPU,;; k=1

~—

SoT 2
< 18/5C2at)  gup By Z Cs (blj - blﬂg,T) ka'T (k) a
'@EPU,;; —

Sor [ /ar (q) /(2g+1) o (q)l/(2q+1) R
S 0271T8q/5(2q+1)—8/5(2q+1)ﬁ;l sup Egz Z ( 1/3?2q+1) ) kall—\ (k’) a
yEPU@ k=1 ( (Z)a* )
Sor (S (b () (2atD) . 1/(2¢+1)
< 0271T8q/5(2q+1)78/5(2q+1)76/10 sup Egz Z ( ( ) ¢f/(2(+)1) ) kalf (]C) a
(@EPU73 k=1 ( ) q

for some constant Cy; € (0, 00), where ny = (inf {ng,T/T, \ /TLQ’T})Q. Now decompose the right-hand
side above as follows,

Vitr (@) #D — g, ()10
>1/(2q+1)

A2 <

1T < (S.67)

(CZ1T8q/5(2q+1)—8/5(2q+1)—6/10 sup E -
FEePus (¢(9) d0, (9)
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So.r 2\ 1/2
X ( Z k (a/f‘ (k)a — a'T 1 (k) a)) )
k=1

_+_<C1271T8q/5(2q+1)8/5(2q+1)6/10 sup E

PePus (4(a) 005, (@)
S 1 2\ 1/2
X (Z ka'T o 1 (k) a) )
k=1

=Ai1r+ Ao,

W(a(q)l/ 2q+1) ~ e, (q)l/(2q+1))

1/(2¢+1)

10/6

where we have used the fact that ny . /T — [c2, 00), néOT/G/T — [e3, 00) with 0 < ¢, ¢3 < c0. Note that,

Vi (8(a)!/TY — gy, (9)/4)
)1/(2q+1)

A%I,T < 02’1T8q/5(2q+1)—8/5(2q+1)—3/55%j,T sup Egp

PePy (5 (q) o=, (@)

So,1 2
X ( ! Z k (a/f (k)a — d'T w1 (k) a))

Sor (7 Sor

(S.68)

< Oy  TR9/5Qat1)=8/5(20+1)=3/5+16r/5(2q-+1)~4/5

R 1/2
N (¢ (q)l/(2q+1) — o, (q)l/(2q+1)>

x| sw Bz )1/(2q+1>

#ePus (4 (a) 902, (a)
X sup Ex

4
ngp:,tw (a’f‘ (k)a —a'T gy (k) a)
&EEPU73 SQ,T k=1 ’

1 4r/(2¢+1)
x <2qK12,q¢e*g, (q)/ / K7 (y) dy /0 K3 (x) dfﬂ)

— 0,

1/2

for some constant Cy,1 € (0, 00), since sup pep,, , ¢z, < 00 and r < 15/16 + 3¢/8. In addition, we have

Vir (6@ = gg,, (o))

A2 o <0 \T89/5(20+1)=8/5(20+1)=3/5 g |, - e (S.69)
PePus (¢(a) ¢0, (@)
So T 2
sup ka'T 4
@GPU:’, ( Z 7 T )

- 1/(2¢+1) . 1/(2¢+1)
< Oy TR/5QD-8/52a+)-3/5 G0 |, Vi (¢ () — ¢o, (4) )
o PcP ( 1/(2¢+1)

v ) %oz, ( )
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So. T 2
X sup Z ki
EWEPU’:’, k=1

— 0,
where we have used the definition of Py 3-(ii), ¢ < 11/2 and [ > 2 which implies that > 7>, B < 0.
Equations (S.67)-(S.69) combine to establish part (ii) of the lemma. OJ

Proof of Theorem 4.5. Let || - ||» = (E» ()*)Y2. For any constant J and any random variables Ji and
Jo, the triangle inequality gives

ol 2 15~ -1 | s
Hence, it suffices to show that
T8q/5(2q+1) QSEL}JI;JJ Ha’jT (81771, /E\QyT) a — a’jT (bng,T, Bg%tﬂ) QH; — 0. (871)
The latter follows from
qu/5(2q+1) e@selgim Hale (817T7 ggj) a — a’jT (51,9@,% /5\27{1“) CLH; (S72>
+ TSQ/5(2‘1+1) (@56111};3 ’a'jT (bLg@,T, /5\2,T> a — a'jT (bl,egz,T’ 5;%2) aH;
— 0.
Note that
o' Jr (gl,T, z2,T> a—dJr (b1,0@,T7 g2,T) a (5.73)
=2 Tz:_l (Kl (El,Tk) - K (bl,b’g«vjk)) T (k)a
k=S r+1
ST Sa,T
+2 3 Ki (burk)aT (k)a—2 Y Ki (b, rk)aT (k) a.
k=1 k=1

We can apply Lemma S.A.7-(ii) to the first term of (S.73) and Lemma S.A.7-(i) to second and third terms
(with {b1 6, 7} in place of {b; r} for the third term). It remains to show that the second summand of

(5.72) converges to zero. Let ¢g, 7 (rnr/T, k) denote the estimator that uses bg% (u) in place of by (u).
We have for k£ > 0,

ET (rnT/T, k) — 69277“ (TTZT/T, k)

it & (o (4 Dnr— (= k)TN (4 Dng— (5= /2 /T
=) % <K< Boit ((r & 1)rr/T) ) K( B (r 1) )/ T) )) Voot

+Op (1/T83'7) . (S.74)

)
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LTmeTJ }:

X ((Tu — (s —k/2)) /T) _k, ((Tu - (f - k/2)) /T> (S.75)
ba, (u) bzf)T (u)
Tu—(s—k/2) Tu—(s—k/2)
T/Z)\Q’T (’U,) Tbg%t‘ (u)

(BQ (u)>—1/5 - ( D2 (u) >—1/5
D1 (u) Dy (u)

< CT4P72P50p (1) |Tu — (s — k/2)| .

§C4‘

< or=4P=2/5/s |Tu — (s — k/2)|

Therefore,

TSq/lO(QQ+1) (a'fT (bghT, /B\QVT) a — a'jT (bl,e%:r’, b927T> a) (876)

T—1 LT/”TJ
— 784/10(2q+1) Z K1 ( beth) a Z (a'e(rng /T, k) a — d'épy 1 (rng /T, k) a)
k=—T+1 r=0
T-1 \T/nr) 4

< T84/102¢+1) ¢ Z | K1 (bgl,Tk)n% Z
k=—T+1 =0 Toyr

- <<<’“t Vng — (s — k/2>>/T> e <<<r+ Vng — (s — k/2>>/T>‘
? bor ((r+ 1) np/T) ’ bor ((r + 1) np/T)

X (a/‘/}s‘/}slfka —Eyp (a/Vs‘/slfka)) +Ea (a/VSVs/*ka)‘
£ Hl,T + HZ,T'

—7opt

>

s=k+1

We have to show that Hy 7 + Hor B0, Let Hi 17 (resp. Hia1) be defined as H; 7 but with the sum
over k restricted to k =1,..., Sy (resp. k= Sr+1,..., T). Let Hy1 1 (resp. Hao 1) be defined as Hy 1
but with the sum over k be restricted to k = 1,..., Sy (resp. k= Sr+1,..., T). Using the definition of
PU,37

St St ny 2 |T/nr] |T/nr) 1
B(}) < TP SO ST Ky o) K o) () X X o (8.77)
k=1j=1 r1=0 7r2=0 ( QT)

I (4 Dne— (5= k)T o { (4 Ding— (s — k/2) /T
gp> Z<K< ; >_K< W (r1 + 1) nr/T) ))

s=k+t1t=j+1 bor ((r1 +1)nr/T)

. (K <<<r2A+ Vnr — (t - §/2)) /T) s <<<r2 + g — (t—j/2)) /T))
*\ bor((r2+ 1)ng/T) oY ((r2 + )ng/T)

xEgp (aV;V,_a—Eyp <VSVH>) (a'ViV.ja —Eo (VViy))

< oT8a/52a+1) g2 p=2/5 (TB;)%E) sup Thy" TVary ( (k:)) Op (1)

< TSI/ g2 -2/ (ngf’;) ?ilf By Var»,, (T (k)) O (1)
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< OT®a+8r)/520+1)-2/5-1), <(5§1¥)_1> -0,

where we have used r < (6 + 4¢) /8. Turning to Hi o7,

2
T-1
E(H? ) < T/3Ca)-2/5 (Tbe%T)lbef}( > k1B (Vary (f(k:)))l/ 20(1)) (S.78)

k=Sr+1
2
T—1
camanenroe 5t) i 5 0 (e, (1))
k=Sp+1

2
T-1
< T84/5(2q+1)p—2/5-1 (ng})*l be_gi} Z K00 (1)
- ) 1,
k‘:ST—‘rl

< T84¢/5(2¢+1) —2/5-1 (ngg)fl 69_121}5%(1_1)) 0,

since r > (b—3/4— q/2)/ (b—1). Eq. (S.77) and (S.78) yield Hy 1 = 0. Given |K; (-)| < 1 and (S.75),

we have

St
|H2’17T| < CTSq/10(2q+1)T_2/5 Z |Ff}7U,T (k)’
k=1

< CTSq/lO(2q+1)T—2/5 Z k,—l -0,
k=1

since 327°, k7! < oo for [ > 1 and T8¢/19C4+1)=2/5 _, (. Finally,

T—1
\H2,2,T|SCTSQ/10(2q+1)T_2/5 Z Ty, 1 (K)|
k=Sr+1

T-1
< OT8q/10(2q+1)T—2/5 Z k,—l
k=Sr+1
< CT8q/10(2q+1)T—2/551117l

< CT8q/10(2q+1)T—2/5T47“(1—l)/5(2q+1) = 0.

This completes the proof of part (ii). OJ
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