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long-run variance estimation under nonstationarity

1 Introduction

Inference in the context of autocorrelated and heteroskedastic data requires estimation of asympto-

tic variances. A large literature in statistics and econometrics has focused on the so-called long-run

variance (LRV) estimation. This work is related to the seminal contributions of the estimates of

the spectral density function of a stationarity sequence which include Bartlett (1950), Berk (1974),

Grenander and Rosenblatt (1953), Parzen (1957) and Priestley (1962; 1981). In econometrics,

Andrews (1991) and Newey and West (1987) extended the scope of kernel autocorrelation and hete-

roskedastic consistent (HAC) estimators of the LRV. Test statistics normalized by HAC estimators

follow standard asymptotic distributions under the null hypothesis under mild conditions.

It was early noted that classical HAC estimators lead to test statistics that do not correctly

control the rejection rates under the null hypothesis when there is strong serial dependence in the

data. A vast literature has considered this issue. Pioneering work by Kiefer, Vogelsang, and Bunzel

(2000) and Kiefer and Vogelsang (2002; 2005) introduced the fixed-b LRV estimators for stationary

sequences which are characterized by using a fixed bandwidth [e.g., the Newey-West/Bartlett

estimator including all lags]. The crucial difference relative to classical HAC estimators is that

the LRV estimator is not consistent under fixed-b asymptotics and inference is nonstandard. Test

statistics under the null hypotheses follow nonstandard distributions whose critical values are

obtained numerically. This has limited the use of fixed-b in practice. The advantage of the fixed-

b framework is that it significantly reduces the oversize problem of test statistics when there is

high temporal dependence. Further developments of this framework include Lazarus, Lewis, and

Stock (2020), Gonçalves and Vogelsang (2011), Jansson (2004), Müller (2007), Politis (2011),

Preinerstorfer and Pötscher (2016), Rho and Shao (2013), Sun (2014), Sun, Phillips, and Jin

(2008), Zhang and Shao (2013), among others.

LRV estimation under nonstationarity has received relatively little attention. Most of the

methods and results developed in the literature are only valid under stationarity [see Shao and

Wu (2007) for results under nonlinear stationarity]. Recent work by Casini (2021) pointed out

that the results under nonstationarity in Andrews (1991) and Newey and West (1987) provide a

poor approximation. In particular, he showed that test statistics normalized by traditional LRV

estimators can exhibit significant power losses when the data are nonstationary. He attributed the

surprising power losses documented in many heteroskedasticity- and autocorrelation-robust (HAR)

inference contexts to inflated LRV estimates. These testing problems are often characterized by

nonstationary alternative hypotheses [e.g., tests for change-points, for predictive accuracy, for

regime-switching, for time-varying parameters and many others]. A partial list of works that

present evidence of such power issues is Casini (2018; 2021), Casini and Perron (2019, 2021b, 2020a,
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2020b) Chang and Perron (2018), Crainiceanu and Vogelsang (2007), Deng and Perron (2006), Juhl

and Xiao (2009), Kim and Perron (2009), Martins and Perron (2016), Perron and Yamamoto (2021)

and Vogelsang (1999)]. These issues occurs because nonstationarity alters the spectrum at low

frequencies [cf. Casini, Deng, and Perron (2021)]. LRV estimators become inflated and when used

to normalize test statistics the latter lose power. Interestingly, this issue relates to the relationship

between structural breaks and long memory [e.g., Granger and Hyung (2004) and Mikosch and

Stărică (2004)]. Intuitively, LRV estimators are weighted sums of sample autocovariances, say Γ̂(k),
where k is the lag. Under nonstationarity, Casini, Deng, and Perron (2021) showed analytically

that Γ̂(k) ≈ ΓT (k)+d where ΓT (k) = T−1∑T
t=k+1 E(VtV ′t−k) (k ≥ 0) and d > 0 for some time series

{Vt} that satisfies high level conditions. Assuming positive dependence, the result implies that for

each lag k the corresponding sample autocovariance overestimates the true autocovariance. This

leads to standard errors that are biased upward and to a consequent drop in the power of the

tests. Interestingly, d is independent of k so that the more lags are included the more severe is

the problem. Further, by virtue of weak dependence we know that ΓT (k) → 0 as k → ∞ but

d > 0 across k. For these reasons, fixed-b-type LRV estimators are expected to suffer most from

this issue.

Casini (2021) proposed to modify classical HAC estimators by adding a second kernel which

applies smoothing over time. Such double kernel HAC estimators (DK-HAC) are naturally justi-

fied under a local stationarity assumption since the spectrum then changes slowly over time. In

this paper we consider the theoretical properties of DK-HAC estimators under general nonstati-

onarity (i.e., unconditionally heteroskedastic random variables). We show consistency and derive

asymptotic MSE bounds that are sharper than the ones in Andrews (1991). The bounds apply

to a given class of processes and require the existence of a certain process whose autocovariance

function forms an envelope for the autocovariance functions of all processes in the class. Andrews

(1991) required this process to be second-order stationary which consequently restricts the admis-

sible class. We instead use restrictions on nonstationarity in the form of smoothness of the spectral

density over time except at a finite number of change-points where the spectral density can exhibit

breaks. To achieve this, our framework uses the segmented locally stationary assumption recently

studied by Casini (2021). It extends the locally stationary framework of Dahlhaus (1997) [see also

Priestley (1965), Vogt (2012), Zhou (2013), Dahlhaus, Richter, and Wu (2019)]. Our bounds apply

to a much wider class of processes. They are more informative because the bounds change with

the nature of the nonstationary.

We determine the optimal data-dependent bandwidths and kernels that minimize the asymp-

totic minimax MSE bounds. There has been some work on data-dependent bandwidths for M-

estimators in locally stationary processes using cross-validation [see Richter and Dahlhaus (2019)].
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Our approach differs in using the plug-in method. Recent work by Preinerstorfer and Pötscher

(2016), Pötscher and Preinerstorfer (2018; 2019) investigated properties of heteroskedasticity and

autocorrelation robust (HAR) tests that hold uniformly over a certain class of data-generating

processes. We instead focus on a MSE criterion and discuss finite-sample issues related to HAR

tests in the presence of nonstationarity which are very different and apply more often in practice.

Because the DK-HAC estimators can be slightly oversized with high serial correlation in

the process of interest, we introduce a novel nonparametric nonlinear VAR prewhitening step

to apply prior to constructing the DK-HAC estimators. It is robust to nonstationarity unlike

previous prewhitened procedures [e.g., Andrews and Monahan (1992), Preinerstorfer (2017), Rho

and Shao (2013)]. The latter are sensitive to estimation errors in the whitening step when there

is nonstationarity in the autoregressive dynamics. For example, with AR(1) prewhitening the

resulting LRV estimator is given by ĴCla,pw = ĴCla,V ∗/(1− â1)2 where â1 is the estimated parameter

in the regression Vt = a1Vt−1 + V ∗t involving the process of interest {Vt} and ĴCla,V ∗ is a classical

HAC estimator applied to the prewhitened residuals {V ∗t }. Under nonstationarity in {Vt}, â1

is biased toward one, [cf. Perron (1989)]. This makes the recoloring step unstable as (1 − â1)2

approaches zero and more so as the magnitude of the nonstationarity increases. The consistency,

rate of convergence and MSE of the new prewhitening step are established under segmented local

stationarity. The prewhitened DK-HAC estimators lead tot tests with exact size close to the

nominal level and much improved power.

Recent theoretical developments have favored the use of fixed-b methods under stationarity

over using HAC standard errors [cf. Lazarus, Lewis, Stock, and Watson]. Some reassessments are

in order because the theoretical justification for using long bandwidths does not carry over to non-

stationary environments. In addition, the results under nonstationarity can also provide guidance

for the case of misspecified models with stationary data and for models with outliers. The rest of

the paper is organized as follows. Section 2 introduces the nonlinear VAR prewhitening procedure.

Asymptotic results for the latter are established in Section 3. Section 4 presents theoretical results

for DK-HAC estimators under general nonstationarity. Section 5 presents the simulation results

about the finite-sample size and power of HAR inference tests. Section 6 concludes. Additional

results and all proofs are included in a supplement [cf. Casini and Perron (2021c)]. The code to

implement the proposed methods is available online in Matlab, R and Stata languages.
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2 The Statistical Environment

HAR inference requires the estimation of asymptotic variances of the form J , limT→∞JT where

JT = T−1
T∑
s=1

T∑
t=1

E(Vs(β0)Vt(β0)′),

with Vt(β) being a random p-vector for each β ∈ Θ ⊂ Rpβ . For the linear regression model

yt = x′tβ0 + et, we have Vt(β0) = xtet. More generally, in nonlinear dynamic models we have, under

mild conditions,

(BTJTBT )−1/2
√
T (β̂ − β0) d→ N (0, Ipβ),

where BT is a nonrandom pβ × p matrix. Often it is easy to construct estimators B̂T such that

B̂T − BT
P→ 0. Thus, one needs a consistent estimate of J = limT→∞ JT to construct a consistent

estimate of limT→∞BTJTB
′
T . Our goal is to consider the estimation of J under nonstationarity. We

first consider the case of segmented locally stationary processes. In Section 4 we consider minimax

MSE bounds for LRV estimation under general nonstationarity.

2.1 Segmented Locally Stationary

Let 0 = λ0 < λ1 < . . . < λm < λm+1 = 1. A function G (u, ·) : [0, 1] × R → C is said to be

piecewise (Lipschitz) continuous in u with m + 1 segments if for each segment j = 1, . . . , m + 1
it satisfies supu6=v |G (u, ω)−G (v, ω) | ≤ K|u− v| for any ω ∈ R with λj−1 < u, v ≤ λj for some

K < ∞. We define Gj (u, ω) = G (u, ω) for λj−1 < u ≤ λj. A function G (·, ·) : [0, 1] × R → C
is said to be left-differentiable at u0 if ∂G (u0, ω) /∂−u , limu→u−

0
(G (u0, ω)−G (u, ω)) / (u0 − u)

exists for any ω ∈ R.

Definition 2.1. A sequence of stochastic processes Vt,T (t = 1, . . . , T ) is called segmented lo-

cally stationary (SLS) with m0 + 1 regimes, transfer function A0 and trend µ· if there exists a

representation,

Vt,T = µj (t/T ) +
ˆ π

−π
exp (iωt)A0

j,t,T (ω) dξ (ω) ,
(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (2.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T and the following holds:

(i) ξ (λ) is a stochastic process on [−π, π] with ξ (ω) = ξ (−ω) and

cum {dξ (ω1) , . . . , dξ (ωr)} = ϕ

 r∑
j=1

ωj

 gr (ω1, . . . , ωr−1) dω1 . . . dωr,
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where cum {·} denotes the cumulant spectra of r-th order, g1 = 0, g2 (ω) = 1, |gr (ω1, . . . , ωr−1)| ≤
Mr for all r with Mr being a constant that may depend on r, and ϕ (ω) = ∑∞

j=−∞ δ (ω + 2πj) is

the period 2π extension of the Dirac delta function δ (·).
(ii) There exists a constant K and a piecewise continuous function A : [0, 1] × R → C such

that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic function Aj : (λ0
j−1, λ

0
j ]×R→ C with

Aj (u, −ω) = Aj (u, ω), λ0
j , T 0

j /T and for all T,

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2.2)

sup
1≤j≤m0+1

sup
T 0
j−1<t≤T

0
j , ω

∣∣∣A0
j,t,T (ω)− Aj (t/T, ω)

∣∣∣ ≤ KT−1. (2.3)

(iii) µj (t/T ) is piecewise continuous.

In the context of HAR inference Vt has a zero mean and so µ (t/T ) = 0 for all t in Definition

2.1.

2.2 Nonparametric Nonlinear VAR Prewhitening

We define a class of nonlinear VAR prewhitened double kernel HAC (DK-HAC) estimators of JT

using three steps as follows. Suppose β̂ is a
√
T -consistent estimator of β0. Divide the sample

in bT/nT c blocks, each with nT observations. For each block r = 0, . . . , bT/nT c, one estimates a

VAR(pA) model for Vt(β̂):

Vt(β̂) =
pA∑
j=1

Âr,jVt−j(β̂) + V ∗t (β̂) for t = rnT + 1, . . . , (r + 1)nT , (2.4)

(for the last block, t = bT/nT c + 1, . . . , T ) where Âr,j for j = 1, . . . , pA are p × p least-squares

estimates and {V ∗t (β̂)} is the corresponding residual vector. The order of the VAR, pA, can

potentially change across blocks but for notational ease we assume it is the same for each r. The

choices of the block length nT and how to optimally split the sample depend on the property of

the spectrum of {Vt(β̂)}. A test for breaks versus smooth changes in the spectrum of {Vt(β̂)} is

introduced in Casini and Perron (2021a). The latter can be employed here to efficiently determine

the sample-spitting. This results in the sample being split in blocks with the property that within

each block {Vt(β̂)} is locally stationary. Thus, least-squares estimation within blocks yields good

estimates Âr,j. The fitted VAR need not be the true model; it is used only as a tool to “soak up”

some of the serial dependence in {Vt(β̂)} and to leave one with residuals {V ∗t (β̂)} that are closer to

white noise than are the variables {Vt(β̂)}. This step is referred to as the whitening transformation.
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The prewhitened DK-HAC estimator ĴT,pw is constructed by applying the DK-HAC estimator

to an inverse transformation of the sequence of VAR residuals {V ∗t (β̂)} (i.e. the recoloring). Let

Ĵpw,T
(
b̂∗1,T , b̂

∗
2,T

)
= T

T − p

T−1∑
k=−T+1

K1
(
b̂∗1,Tk

)
Γ̂∗D (k) , where (2.5)

Γ̂∗D (k) , nT
T − nT

b(T−nT )/nT c∑
r=0

ĉ∗T,D (rnT/T, k) ,

with K1 (·) is a real-valued kernel in the class K1 defined below, b̂∗1,T is a data-dependent bandwidth

sequence to be discussed below, nT →∞, and

ĉ∗D,T (rnT/T, k) ,


(
T b̂∗2,T

)−1∑T
s=k+1K

∗
2

(
((r+1)nT−(s−k/2))/T

b̂∗
2,T

)
V̂ ∗D,sV̂

∗′
D,s−k, k ≥ 0(

T b̂∗2,T
)−1∑T

s=−k+1K
∗
2

(
((r+1)nT−(s+k/2))/T

b̂∗
2,T

)
V̂ ∗D,s+kV̂

∗′
D,s, k < 0

,

V̂ ∗D,s = D̂sV̂
∗
s , V̂ ∗s = V ∗s (β̂), K∗2 being a kernel, b̂∗2,T is a data-dependent bandwidth sequence to be

defined below, and D̂s = (Ip −
∑pA
j=1 ÂD,s,j)−1 with ÂD,s,j = Âr,j for s = rnT + 1, . . . , (r + 1)nT .

In order to guarantee positive semi-definiteness, one needs to use a data taper or, e.g., for k ≥ 0
[cf. Casini (2021)],

K∗2

(r + 1)nT − (s− k/2)
T b̂∗2,T


=
K2

(r + 1)nT − s
T b̂∗2,T

K2

(r + 1)nT − (s− k)
T b̂∗2,T

1/2

.

Below we assume that Âr,j
P→ Ar,j ∈ Rp×p for all r and j. We suggest using the Quadratic Spectral

(QS) kernel

KQS
1 (x) =

(
25/

(
12π2x2

)) [sin (6πx/5)
6πx/5 − cos (6πx/5)

]
,

and a quadratic-type kernel [cf. Epanechnikov (1969)] K2 (x) = 6x (1− x) , 0 ≤ x ≤ 1. These

kernels are optimal under an MSE criterion. For data-dependent bandwidths we use plug-in

estimates of the optimal value that minimizes some MSE criterion, see Section 4 and Casini (2021).

Let ΓD,u (k) = Cov(V ∗D,Tu, V ∗D,Tu−k) and Cpp = ∑p
j=1

∑p
l=1 ιjι

′
l⊗ ιlι′j, where ιi is the i-th elementary

p-vector. The notation W and W̃ are used for p2× p2 weight matrices. Let F (K2) ,
´ 1

0 K
2
2 (x) dx,
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H (K2) = (
´ 1

0 x
2K2 (x) dx)2,

D1 (u) , vec
(
∂2c∗D (u, k) /∂u2

)′
W̃ vec

(
∂2c∗D (u, k) /∂u2

)
,

D2 (u) , tr[W̃ (Ip2 + Cpp)
∞∑

l=−∞
c∗D (u, l)⊗ [c∗D (u, l) + c∗D (u, l + 2k)]],

where c∗D (u, k) = Cov(V ∗D,Tu, V ∗D,Tu−k), V ∗D,t = DtV
∗
t ,

V ∗t = Vt −
pA∑
j=1

Ar,jVt−j for t = rnT + 1, . . . , (r + 1)nT ,

Dt = (Ip −
pA∑
j=1

AD,t,j)−1, AD,t,j = Ar,j for t = rnT + 1, . . . , (r + 1)nT .

The optimal b2,T is given by [see Casini (2021)]

bopt,∗
2,T (u) = [H (K2)D1 (u)]−1/5 (F (K2) (D2 (u)))1/5 T−1/5.

Let K1,q , limx↓0 (1−K1 (x)) / |x|q for q ∈ [0, ∞); K1,q < ∞ if and only if K1 (x) is q times

differentiable at zero. Let f ∗D (u, ω) = ∑∞
k=−∞ c

∗
D (u, k) e−iωk and define the index of smoothness

of f ∗D (u, ω) at ω = 0 by f
∗(q)
D (u, 0) , (2π)−1∑∞

k=−∞ |k|
q c∗D (u, k). Let

φD (q) =
vec

(´ 1
0 f
∗(q)
D (u, 0) du

)′
Wvec

(´ 1
0 f
∗(q)
D (u, 0) du

)
trW (Ip2 + Cpp)

(´ 1
0 f
∗
D (u, 0) du

)
⊗
(´ 1

0 f
∗
D (v, 0) dv

) .
The optimal b1,T given the optimal value bopt,∗

1,T is given by [see Casini (2021)],

bopt,∗
1,T = (2qK2

1,qφD (q)Tbopt
2,T/

(
∫ K2

1 (y) dy ∫ K2
2 (x) dx

)
)−1/(2q+1),

with b
opt,∗
2,T =

´ 1
0 b

opt,∗
2,T (u) du. For the QS kernel, q = 2, K1,2 = 1.421223, and

´
K2

1 (x) dx = 1. For

the optimal K2 we have H(Kopt
2 ) = 0.09 and F (Kopt

2 ) = 1.2.

In order to construct a data-dependent bandwidth for b2,T (u), we need consistent estimates

of D1,D (u) and D2,D (u). They are discussed in Casini (2021). We set W̃ (r,r) = p−1 for all r which

corresponds to the normalization used below for W . The estimate of D1,D (u) requires a further

parametric smoothness assumption. This results in,

D̂1,D (u) , [Sω]−1 ∑
s∈Sω

[
(3/π) (1 + 0.8 (cos 1.5 + cos 4πu) exp (−iωs))−4 (0.8 (−4π sin (4πu))) exp (−iωs)

−π−1 |1 + 0.8 (cos 1.5 + cos 4πu) exp (−iωs)|−3
(
0.8

(
−16π2 cos (4πu)

))
exp (−iωs)

]
,
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where [Sω] is the cardinality of Sω and ωs+1 > ωs with ω1 = −π, ω[Sω ] = π. An estimate of D2,D (u)
is given by

D̂2,D (u0) , p−1
p∑
r=1

bT 4/25c∑
l=−bT 4/25c

ĉ
(r,r)
D,T (u0, l)

[
ĉ

(r,r)
D,T (u0, l) + ĉ

(r,r)
D,T (u0, l + 2k)

]
,

where the number of summands grows at the same rate as the inverse of the optimal bandwidth

bopt,∗
1,T . Hence, the estimate of the optimal bandwidth bopt,∗

2,T is given by

b̂
∗
2,T = (nT/T )

bT/nT c−1∑
r=1

b̂∗2,T (ur) , where (2.6)

b̂∗2,T (ur) = 1.7781(D̂1,D (ur))−1/5(D̂2,D (ur))1/5T−1/5, ur = rnT/T. (2.7)

The data-dependent bandwidth parameter b̂∗1,T is then defined as follows. First, one specifies

p univariate approximating parametric models for {V ∗(r)D,t } for r = 1, . . . , p. Second, one estimates

the parameters of the approximating parametric model by least-squares. Third, one substitutes

these estimates into φD (q) with the estimate denoted by φ̂D (q). This yields the data-dependent

bandwidth parameter

b̂∗1,T = [2qK2
1,qφ̂D (q)T b̂

∗
2,T/

ˆ
K2

1 (x) dx ∫ K2
2 (x) dx]1/(2q+1). (2.8)

For the QS kernel, we have b̂∗1,T = 0.6828(φ̂D (2)T b̂
∗
2,T )−1/5. The suggested approximating parame-

tric models are locally stationary first order autoregressive (AR(l)) models for V
∗(r)
D,t = a

(r)
1 (t/T )

V
(r)∗
D,t−1 + u

(r)
t , r = 1, . . . , p. Let â

(r)
1 (u) and (σ̂(r) (u))2 be the least-squares estimates of the autore-

gressive and innovation variance parameters computed using data close to rescaled time u = t/T :

â
(r)
1 (u) =

∑t
j=t−n2,T+1 V̂

(r)
D,jV̂

(r)
D,j−1∑t

j=t−n2,T+1

(
V̂

(r)
D,j−1

)2 , σ̂(r) (u) =
 t∑
j=t−n2,T+1

(
V̂

(r)
D,j − â

(r)
1 (u) V̂ (r)

D,j−1

)2
1/2

,
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where n2,T →∞. Then, for q = 2, we have

φ̂D (2) =
p∑
r=1

W (r,r)

18

n3,T

T

bT/n3,Tc−1∑
j=0

(
σ̂(r) ((jn3,T + 1) /T ) â(r)

1 ((jn3,T + 1) /T )
)2

(
1− â(r)

1 ((jn3,T + 1) /T )
)4


2 /

p∑
r=1

W (r,r)

n3,T

T

bT/n3,Tc−1∑
j=0

(
σ̂(r) ((jn3,T + 1) /T )

)2

(
1− â(r)

1 ((jn3,T + 1) /T )
)2


2

.

where W (r,r), r = 1, . . . , p are pre-specified weights and n3,T → ∞. The usual choice for W (r,r) is

one for all r except that which corresponds to an intercept and zero for the latter.

3 Large-Sample Results for Prewhitened DK-HAC

In this section we analyze the asymptotic properties of Ĵpw,T . We consider the following class of

kernels:

K3 =
{
K3 (·) ∈K1 : (i) |K1 (x)| ≤ C1 |x|−b

with b > max (1 + 1/q, 4) for |x| ∈ [xL, DThTxU ] , T−1/2hT →∞, DT > 0, xL, xU ∈ R,

1 ≤ xL < xU , and with b > 1 + 1/q for |x| /∈ [xL, DThTxU ] , and someC1 <∞,

where q ∈ (0, ∞) is such thatK1,q ∈ (0, ∞) , (ii) |K1 (x)−K1 (y)| ≤ C2 |x− y| ∀x,

y ∈ R for some costantC2 <∞, and (iii) q < 34/4} .

K3 contains commonly used kernels, e.g., QS, Bartlett, Parzen, and Tukey-Hanning, with the

exception of the truncated kernel. For the QS, Parzen, and Tukey-Hanning kernels, q = 2. For the

Bartlett kernel, q = 1. We define

MSE(Tb1,T b2,T , J̃T , JT , W ) = Tb1,T b2,TE[vec(J̃T − JT )′Wvec(J̃T − JT )].

We now present consistency and rate of convergence results that hold when {Vt} is segmented

locally stationary. We need the following assumptions.

Assumption 3.1. (i) {Vt} is a mean-zero segmented locally stationary process with m0 +1 regimes

as defined in Section 2.1; (ii) A (u, ω) is twice continuously differentiable in u at all u 6= λ0
j ,

j = 1, . . . , m0 + 1 with uniformly bounded derivatives (∂/∂u)A (u, ·) and (∂2/∂u2)A (u, ·), and

Lipschitz continuous in the second component; (iii) (∂2/∂u2)A (u, ·) is Lipschitz continuous at

all u 6= λ0
j , j = 1, . . . , m0 + 1; (iv) A (u, ω) is twice left-differentiable in u at u = λ0

j , j =

9
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1, . . . , m0 + 1 with uniformly bounded derivatives (∂/∂−u)A (u, ·) and (∂2/∂−u
2)A (u, ·) and has

piecewise Lipschitz continuous derivative (∂2/∂−u
2)A (u, ·).

We also need to impose conditions on the temporal dependence of {Vt}. Let

κ
(a1,a2,a3,a4)
V,t (u, v, w) , κ(a1,a2,a3,a4) (t, t+ u, t+ v, t+ w)− κ(a1,a2,a3,a4)

N (t, t+ u, t+ v, t+ w)

, E(V (a1)
t V

(a2)
t+u V

(a3)
t+v V

(a4)
t+w )− EV (a1)

N ,t V
(a2)
N ,t+uV

(a3)
N ,t+vV

(a4)
N ,t+w,

where {VN ,t} is a Gaussian sequence with the same mean and covariance structure as {Vt}.
κ

(a1,a2,a3,a4)
V,t (u, v, w) is the time-t fourth-order cumulant of (V (a1)

t , V
(a2)
t+u , V

(a3)
t+v , V

(a4)
t+w ) while κ

(a1,a2,a3,a4)
N

(t, t+u, t+ v, t+w) is the time-t centered fourth moment of Vt if Vt were Gaussian. Let λmax (A)
denote the largest eigenvalue of the matrix A.

Assumption 3.2. (i)
∑∞
k=−∞ supu∈[0, 1] ‖c (u, k)‖ <∞ and

∑∞
k=−∞

∑∞
j=−∞

∑∞
l=−∞ supu κ

(a1,a2,a3,a4)
V,bTuc

(k, j, l) < ∞ for all a1, a2, a3, a4 ≤ p. (ii) For all a1, a2, a3, a4 ≤ p there exists a function

κ̃a1,a2,a3,a4 : [0, 1] × Z × Z × Z → R such that sup1≤j≤m0+1 supλ0
j−1<u≤λ

0
j
|κ(a1,a2,a3,a4)
V,bTuc (k, s, l) −

κ̃a1,a2,a3,a4 (u, k, s, l) | ≤ KT−1 for some constant K; the function κ̃a1,a2,a3,a4 (u, k, s, l) is twice dif-

ferentiable in u at all u 6= λ0
j (j = 1, . . . , m0+1) with uniformly bounded derivatives (∂/∂u) κ̃a1,a2,a3,a4

(u, ·, ·, ·) and (∂2/∂u2) κ̃a1,a2,a3,a4 (u, ·, ·, ·), and twice left-differentiable in u at u = λ0
j (j = 1, . . . , m0+

1) with uniformly bounded derivatives (∂/∂−u) κ̃a1,a2,a3,a4 (u, ·, ·, ·) and (∂2/∂−u
2)κ̃a1,a2,a3,a4 (u, ·, ·, ·),

and piecewise Lipschitz continuous derivative (∂2/∂−u
2) κ̃a1,a2,a3,a4 (u, ·, ·, ·).

Assumption 3.3. (i)
√
T (β̂−β0) = OP (1); (ii) supu∈[0, 1] E||VbTuc||2 <∞; (iii) supu∈[0, 1] E supβ∈Θ

|| (∂/∂β′)VbTuc (β) ||2 <∞; (iv)
´∞
−∞ |K1 (y)| dy,

´ 1
0 |K2 (x)| dx <∞.

Assumption 3.4. (i) Assumption 3.2-(i) holds with Vt replaced by

(
V ′bTuc, vec

((
∂

∂β′
VbTuc (β0)

)
− E

(
∂

∂β′
VbTuc (β0)

))′)′
.

(ii) supu∈[0, 1] E(supβ∈Θ || (∂2/∂β∂β′)V (a)
bTuc (β) ||)2 <∞ for all r = 1, . . . , p.

Assumption 3.5. Let WT denote a p2 × p2 weight matrix such that WT
P→ W .

Assumption 3.6. (i) φ̂D (q) = OP (1) and 1/φ̂D (q) = OP (1); (ii) inf{T/n3,T ,
√
n2,T}(φ̂D (q) −

φθ∗) = OP (1) for some φθ∗ ∈ (0, ∞) where n2,T/T + n3,T/T → 0, n5/4
2,T/T → [c2, ∞), n10/6

3,T /T →
[c3, ∞) with 0 < c2, c3 <∞; (iii) supu∈[0, 1] λmax(Γ∗D,u (k)) ≤ C3k

−l for all k ≥ 0 for some C3 <∞
and some l > max{2, (4q + 2) / (2 + q) , (11 + 6q) / (11 + 4q) , (23 + 34q) / (23 + 10q)}, where q

is as in K3; (iv) uniformly in u ∈ [0, 1], D̂1 (u) , D̂2 (u), 1/D̂1 (u) and 1/D̂2 (u) are OP (1);

10
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(v) ωs+1 − ωs → 0, [Sω]−1 → ∞ at rate O (T−1) and O (T ) , respectively; (vi)
√
Tb2,T (u)(D̂2 (u)

−D2 (u)) = OP (1) for all u ∈ [0, 1]; (vii) K2 includes kernels that satisfy |K2 (x)−K2 (y)| ≤
C4 |x− y| for all x, y ∈ R and some constant C4 <∞.

Assumption 3.7.
√
nT (Âr,j − Ar,j) = OP (1) for some Ar,j ∈ Rp×p for all j = 1, . . . , pA and all

r = 0, . . . , bT/nT c.

For the consistency of ĴT,pw, Assumption 3.1-3.3, 3.6-(i,iv,vii) and 3.7 are sufficient. For the

rate of convergence and asymptotic MSE results additional conditions are needed. Let

bθ1,T =
(

2qK2
1,qφθ∗Tbθ2,T/

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
)−1/(2q+1)

,

where bθ2,T ,
´ 1

0 [H (K2) D1 (u)]−1/5 (F (K2)D2 (u))1/5 T−1/5du. Recall that the bandwidths b̂
∗
2,T ,

b̂∗2,T and b̂∗1,T are defined by (2.6), (2.7) and (2.8), respectively.

Theorem 3.1. Suppose K1 (·) ∈K3, q is as in K3, ||
´ 1

0 f
∗(q)
D (u, 0) || <∞. Then, we have:

(i) If Assumption 3.1-3.3, 3.6-(i,iv,vii) and 3.7 hold,
√
nT b̂

∗
1,T → ∞, and q > 1/2, then

ĴT,pw(b̂∗1,T , b̂∗2,T )− JT P→ 0.

(ii) If Assumption 3.1, 3.2-(ii), 3.3-3.4, 3.6-(ii,iii,v,vi,vii) and 3.7 hold, and nT/T b̂
∗
1,T → 0,

nT/T (b̂∗1,T )q → 0, T b̂
∗
2,T/(n2

T b̂
∗
1,T ) → 0, T b̂

∗
2,T b̂

∗
1,T/nT → 0, then

√
Tbθ1,T bθ2,T (Ĵpw,T (b̂∗1,T , b̂

∗
2,T ) −

JT ) = OP (1).

(iii) Let γK,q = 2qK2
1,qφθ∗/(

´
K2

1 (y) dy
´ 1

0 K
2
2 (x) dx). If Assumption 3.3-3.5 and 3.6-(ii,iii,v,vi,vii)

hold, then

lim
T→∞

MSE
(
T 4q/10(2q+1), Ĵpw,T

(
b̂∗1,T , b̂

∗
2,T

)
, JT , WT

)

= 4π2
[
γK,qK

2
1,qvec

(ˆ 1

0
f
∗(q)
D (u, 0) du

)′
Wvec

(ˆ 1

0
f
∗(q)
D (u, 0) du

)]

+
ˆ
K2

1 (y) dy
ˆ
K2

2 (x) dx trW (Ip2 − Cpp)
(ˆ 1

0
f ∗D (u, 0) du

)
⊗
(ˆ 1

0
f ∗D (v, 0) dv

)
.

A corresponding result to Theorem 3.1 for non-prewhitened DK-HAC estimators is established

in Theorem 5.1 in Casini (2021) under the same assumptions with exception of Assumption 3.7.

Note that for u 6= λ0
r (r = 1, . . . , m0), f ∗D (u, ω) = D (u, ω) f ∗ (u, ω)D (u, ω)′ , where D (u, ω) =

(Ip −
∑pA
j=1AD,j (u) e−ijω)−1 with AD,j (u) = AD,Tu,j + O (T−1) and f ∗ (u, ω) is the local spectral

density function of {V ∗t }. Since D (u− k/T, ω) = D (u, ω) + O (T−1) by local stationarity, we

11
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have,

f
∗(q)
D (u, 0) = (−)q/2 dq

dωq

[
D (u, ω)−1 f (u, ω)

(
D (u, ω)′

)−1
]
|ω=0 +O

(
T−1

)
, q even.

A meaningful comparison between prewhitened and non-prewhitened DK-HAC estimators ĴT can

be made only if reasonable choices of the bandwdiths b1,T and b2,T are made. When the optimal

bandwidths for Ĵpw,T and ĴT are used we find that ĴT,pw has smaller asymptotic MSE than ĴT if

and only if (assuming p = 1, i.e., the scalar case, with w1,1 = 1)

ˆ 1

0
f
∗(q)
D (u, 0) du︸ ︷︷ ︸

squared bias

(ˆ 1

0
f ∗D (u, 0) du

)2q

︸ ︷︷ ︸
variance

<

ˆ 1

0
f (q) (u, 0) du︸ ︷︷ ︸
squared bias

(ˆ 1

0
f (u, 0) du

)2q

︸ ︷︷ ︸
variance

. (3.1)

A numerical comparison would be tedious since the condition depends on the true data-generating

process of {Vt} and the VAR approximation for {V̂t}. Under stationarity, Grenander and Rosen-

blatt (1957) and Andrews and Monahan (1992) considered a few examples. We can make a few

observations on the difference between the condition (3.1) and an analogous condition for the case

with {Vt} second-order stationary and Ds = D = (1 − ∑pA
j=1Aj)−1 for all s [cf. Andrews and

Monahan (1992)]. The condition in Andrews and Monahan (1992) is then

|f ∗(q) (0) |D2 < |f q (0) | (3.2)

where the quantities f q (0) and f ∗(q) (0) do not depend on u by stationarity. The main difference

between the two conditions (3.2)-(3.1) is that the part involving the asymptotic variance is missing

in (3.2). The quantities |f ∗(q) (0) |D2 and |f q (0) | are from the asymptotic squared bias. This is

a consequence of the fact that prewhitened and non-prewhitened HAC estimators have the same

asymptotic variance under stationarity when the optimal bandwidths are used. This property

does not hold when {Vt} is nonstationary. The condition (3.1) suggests instead that, in general,

both the asymptotic squared bias and asymptotic variance of prewhitened and non-prewhitened

HAC estimators can be different. Simulations in Andrews and Monahan (1992) showed that this is

indeed the case even under stationarity: the variance of the prewhitened HAC estimators is larger

than that of the non-prewhitened HAC estimators—this feature is consistent with our theoretical

results but not with theirs.

12
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4 Extension to General Nonstationary Random Variables

We now move from SLS to unconditionally heteroskedastic processes and establish new MSE

bounds which we compare to existing ones. To focus on the main intuition and for comparison

purposes, we consider the non-prewhitened DK-HAC estimator

ĴT (b1,T , b2,T ) =
T−1∑

k=−T+1
K1(b1,Tk)Γ̂ (k) ,

where Γ̂ (k) is defined analogously to Γ̂∗D (k) but with V̂t in place of V̂ ∗D,t. Corresponding results

for the prewhitened estimator Ĵpw,T can be obtained by using the results of the previous section,

though the proofs are more lengthy with no special gain in intuition. We provide theoretical results

under the assumption that {Vt} is generated by some distribution P. EP denotes the expectation

taken under P. We establish lower and upper bounds on the MSE under P and use a minimax

MSE criterion for optimality. Define the sample size dependent spectral density of {Vt} as

fP,T (ω) , (2π)−1
T−1∑

k=−T+1
ΓP,T (k) exp (−iωk) for ω ∈ [−π, π] ,

where ΓP,T (k) is defined analogously to ΓT,k but with the expectation taken under P. The

estimand is then given by JP,T ,
∑T−1
k=−T+1 ΓP,T (k) .

The theoretical bounds below are derived in terms of two distributions Pw, w = L, U ,

under which {Vt} is a zero-mean segmented locally stationary with m0 + 1 regimes and satisfies

Assumption 3.1-3.2 with autocovariance function {ΓPw,t/T (k)}. Then, {a′Vt} has spectral density

fPw,a (ω) ,
´ 1

0 fPw,a (u, ω) du where

fPw,a (u, ω) , (2π)−1
∞∑

k=∞
a′ΓPw,u (k) a exp (−iωk) for all a ∈ Rp.

Let κP,aV,t (k, j, m) denote the time-t fourth-order cumulant of (a′Vt, a′Vt+k, a′Vt+j, a′Vt+m) under

P. Define

P U ,

{
P : −ΓPU ,t/T (k) ≤ ΓP,t/T (k) ≤ ΓPU ,t/T (k) , and |κP,aV,t (k, j, m)| ≤ |κ∗t (k, j, m)|

∀t ≥ 1, k, j, m ≥ −t+ 1, a ∈ Rp that satisfies
∞∑

k=−∞

∞∑
j=−∞

∞∑
m=−∞

sup
t
κ∗t (k, j, m) <∞

}
,

13
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and P L ,

{
P : 0 ≤ ΓPL,t/T (k) ≤ ΓP,t/T (k) , ∀t ≥ 1, k ≥ −t+ 1 andκP,aV,t (k, j, m)

satisfies the same condition as in P U

}
.

To derive the MSE bounds for a given class of general nonstationary processes one needs to

impose restrictions on the autocovariance function of the processes in the class relative to the

autocovariance function of some process whose second-order properties are known. P U includes

all distributions such that the autocovariances of {Vt} are bounded above by those of some SLS

process with distribution PU , thereby allowing considerable variability of ΓP,t/T (k) for given t and

k. The set P L requires the autocovariances of {Vt} to be bounded below by positive semidefinite

autocovariances of some SLS process with distribution PL. The sets P U and P L contain all

distributions that generate nonstationary processes whose autocovariance function are below

Let cPw (u, k) =
´
eiωkΓPw,u (k) dω denote the local autocovariance associated to the distri-

bution Pw, w = L, U. Let

K1 =
{
K1 (·) : R→ [−1, 1] : K1 (0) = 1, K1 (x) = K1 (−x) , ∀x ∈ R
ˆ ∞
−∞

K2
1 (x) dx <∞, K1 (·) is continuous at 0 and at all but finite numbers of points

}
.

Note that K3 ⊂K1. In particular, K1 includes also the truncated kernel.

4.1 Consistency, Rate of Convergence and MSE Bounds

Consider the following generalization of Assumption 3.1-3.2:

Assumption 4.1. {Vt} is a mean-zero sequence and satisfies
∑∞
k=0 supt≥1 ||EP(VtV ′t+k)|| <∞ and

for all a1, a2, a3, a4 ≤ p,
∑∞
k=1

∑∞
j=1

∑∞
m=1 supt≥1 |κ

(a1, a2, a3, a4)
P,V,t (k, j, m) | <∞.

Let MSEP (·) denote the MSE of · under P and let K1,+ = {K1 (·) ∈K1 : K1 (x) ≥ 0∀x}.
K1,+ is a subset of K1 that contains all kernels that are non-negative and is used for some results

below. The QS kernel is not in K1,+. The smoothness of fPw,a (u, ω) at ω = 0 is indexed by

f
(q)
Pw,a

(u, 0) = (2π)−1
∞∑

k=−∞
|k|q a′ΓPw,u (k) a for q ∈ [0, ∞), w = L, U.

We first consider the MSE bounds for the estimator J̃T that is constructed using Vt(β0) rather

14
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than V̂t. Let

K2 =
{
K2 (·) : R→ [0, ∞] : K2 (x) = K2 (1− x) ,

ˆ
K2 (x) dx = 1,

K2 (x) = 0, for x /∈ [0, 1] , K2 (·) is continuous
}
.

Theorem 4.1. Suppose Assumption 4.1 holds, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT/T → 0
and 1/Tb1,T b2,T → 0. If nT/Tb

q
1,T → 0, b2

2,T/b
q
1,T → 0 and Tb2q+1

1,T b2,T → γ ∈ (0, ∞) for some

q ∈ [0, ∞) for which K1,q, |
´ 1

0 f
(q)
Pw,a

(u, 0) du| ∈ [0, ∞), w = L, U , a ∈ Rp, then we have:

(i) for all K1 (·) ∈K1,

lim
T→∞

Tb1,T b2,T sup
P∈PU

MSEP

(
a′J̃Ta

)
= 4π2

γK2
1,q

(ˆ 1

0
f

(q)
PU ,a

(u, 0) du
)2

+2
ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPU ,a (u, 0) du

)2 .
(ii) for all K1 (·) ∈K1,+,

lim
T→∞

Tb1,T b2,T inf
P∈PL

MSEP

(
a′J̃Ta

)
= 4π2

γK2
1,q

(ˆ 1

0
f

(q)
PL,a

(u, 0) du
)2

+2
ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPL,a (u, 0) du

)2 .
The theoretical bounds in Theorem 4.1 are sharper than the ones in Andrews (1991) which are

based on stationarity (i.e., the autocovariances that dominate the autocovariances of any P ∈ P U

are assumed in Andrews (1991) to be those of a stationary process). Given that stationarity is a

special case of SLS, our bounds apply to a wide class of processes. Furthermore, they are more

informative because they change with the specific type of nonstationarity unlike Andrews’ bounds

that depend on the spectral density of a stationary process.

The theorem is derived under the assumption b2
2,T/b

q
1,T → 0. When instead b2

2,T/b
q
1,T → ν ∈

(0, ∞), there is an additional term in the bound. For example, in part (i) this term is

(2−1ν

ˆ 1

0
x2K2 (x)

∞∑
k=−∞

ˆ 1

0

(
∂2/∂u2

)
cPU

(u, k) du)2.

Some of the results of this paper are extended to the case b2
2,T/b

q
1,T → ν ∈ (0, ∞) in Belotti, Casini,

Catania, Grassi, and Perron. Thus, our bounds show how nonstationarity influences the bias-
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variance trade-off. They also highlight how it is affected by the smoothing over the time direction

versus the autocovariance lags direction. These are important elements in order to understand the

properties of HAR tests normalized by LRV estimators. We now extend the results in Theorem

4.1 to the estimator ĴT that uses Vt(β̂).

Assumption 4.2. (i) Assumption 4.1 holds with Vt replaced by (V ′bTuc, vec(((∂/∂β′)VbTuc(β0))−
EP((∂/∂β′)VbTuc(β0))′)′; (ii) supu∈[0, 1] EP(supβ∈Θ ||(∂2/∂β∂β′)V (ar)

bTuc (β) ||2) <∞ for all r = 1, . . . , p.

To show the asymptotic equivalence of the MSE of a′ĴTa to that of a′J̃Ta we need an additional

assumption. Define

H1,T , b1,T

T−1∑
k=−T+1

∣∣∣∣∣K1 (b1,Tk)
∣∣∣∣∣

×
∣∣∣∣∣nTT

bT/nT c∑
r=0

(Tb2,T )−1/2
T∑

s=k+1
K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
∂

∂β
a′Vs (β0) a′V s−k (β0)

∣∣∣∣∣,

H2,T , b1,T

T−1∑
k=−T+1

∣∣∣∣∣K1 (b1,Tk)
∣∣∣∣∣sup
β∈Θ

∣∣∣∣∣nTT
bT/nT c∑
r=0

(Tb2,T )−1
T∑

s=k+1

×K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
∂2

∂β∂β′
a′Vs (β) a′V s−k (β)

∣∣∣∣∣.
Let H

(r)
1,T , β̂(r), and β

(r)
0 denote the r-th elements of H1,T , β̂, and β0, respectively, for r = 1, . . . , p.

Assumption 4.3. For all r = 1, . . . , p, lim supT→∞ supP∈PU
EP(H(r)

1,T
√
T (β̂(r)− β(r)

0 ))2 <∞ and

lim supT→∞ supP∈PU
EP(
√
T (β̂ − β0)′H2,T

√
T (β̂ − β0))2 <∞.

Theorem 4.2. Suppose K1 (·) ∈ K1, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT/T → 0 and

1/Tb1,T b2,T → 0. We have:

(i) If Assumption 3.3 and 4.1 hold,
√
Tb1,T →∞, then ĴT − JT

P→ 0 and ĴT − J̃T
P→ 0.

(ii) If Assumption 3.3 and 4.1-4.2 hold, nT/Tb1,T → 0, nT/Tb
q
1,T → 0 and Tb2q+1

1,T b2,T → γ ∈
(0, ∞) for some q ∈ [0, ∞) for which K1,q, |

´ 1
0 f

(q)
Pw,a

(u, 0) du| ∈ [0, ∞), w = U, L, a ∈ Rp, then√
Tb1,T b2,T (ĴT − JT ) = OP (1) and

√
Tb1,T (ĴT − J̃T ) = oP (1) .

(iii) Under the assumptions of part (ii) and Assumption 4.3,

lim
T→∞

sup
P∈PU

Tb1,T b2,T |MSEP(a′ĴTa)−MSEP(a′J̃Ta)| = 0

for all a ∈ Rp such that |
´ 1

0 f
(q)
PU ,a

(u, 0) du| <∞.
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Theorem 4.2 extends the consistency, rate of convergence, MSE results of Theorem 3.2 in

Casini (2021). The asymptotic equivalence of the MSE implies that the bounds in Theorem 4.1

applies also to ĴT as well as to . The MSE equivalence is used to show that the optimal kernels

and bandwidths results below apply to ĴT as well as to J̃T . Similar results can be shown for the

prewhitened estimator ĴT,pw. For this case, the sets P U and P L would need to be defined in

terms of the autocovariance function of V ∗D,t = DtV
∗
t . The distributions PU and PL that form an

envelope for the autocovariances of V ∗D,t may either depend on the same or on different prewhitening

models.

4.2 Optimal Bandwidths and Kernels

We use the sequential MSE procedure that first determines the optimal b2,T (u) and then determines

the optimal b1,T as function of the integrated optimal b2,T , see Casini (2021). This contrasts with

the MSE criterion used by Belotti, Casini, Catania, Grassi, and Perron which determines the

optimal b1,T and b2,T that jointly minimize the maximum asymptotic MSE bound. An advantage

of the sequential criterion is that the optimal b2,T (u) is determined for each u. Thus, it accounts

more accurately for nonstationarity. The results for the global MSE criterion can be easily extended

using similar arguments as those used in this section. We consider distributions P ∈ P U,2 where

P U,2 ⊆ P U is defined below. We need to restrict attention to a subset P U,2 of P U for technical

reasons related to the derivation of the optimal bandwidth bopt
2,T . The distributions in P U,2 restrict

the degree of nonstationarity by requiring some smoothness of the local autocovariance. This

is intuitive since the optimality of bopt
2,T is justified under smoothness locally in time. We remark

however, that, the optimality of b1,T and K1 determined below holds over all distributions P ∈ P U .

We show that the resulting optimal kernels are Kopt
1 (·) and Kopt

2 (·) from Section 3. For any a ∈ Rp

consider the following inequality,

∣∣∣∣∣a′
(
∂2

∂2u
cP (u0, k)

)
a

∣∣∣∣∣ ≤
∣∣∣∣∣∣a′
(
∂2

∂2u
cPU

(u0, k)
)
a

∣∣∣∣∣∣. (4.1)

We consider the following class of distributions,

P U,2 , {P : P ∈ P U , m0 = 0, and (4.1) holds∀k ∈ R and∀u0 ∈ (0, 1)} .

LetD1,U,a(u0) , (a′(∂2cPU
(u0, k)/∂u2)a)2 andD2,U,a(u0) , ∑∞l=−∞ a′(cPU

(u0, l)[cPU
(u0, l) +cPU

(u0, l+
2k)]′)a.

Proposition 4.1. Suppose Assumption 3.3 and 4.1-4.3 hold. For any sequence of bandwidth
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parameters {b2,T} such that b2,T → 0, we have

sup
P∈PU

MSEP (a′ĉT (u0, k) a) = EP (a′ĉT (u0, k) a− a′cP (u0, k) a)2
(4.2)

≤ 1
4b

4
2,T

(ˆ 1

0
xK2 (x) dx

)2 (
∂2

∂2u
a′cPU

(u0, k) a
)2

+ 1
Tb2,T

ˆ 1

0
K2

2 (x) dx
∞∑

l=−∞
a′
(
cPU

(u0, l) [cPU
(u0, l) + cPU

(u0, l + 2k)]′
)
a

+ 1
Tb2,T

ˆ 1

0
K2

2 (x) dx
∞∑

h1=−∞

∞∑
h2=−∞

κPU ,aV,Tu0 (h1, 0, h2) + o
(
b4

2,T

)
+O (1/ (b2,TT )) ,

which is minimized for

bopt
2,T (u0) = [H

(
Kopt

2

)
D1,U,a (u0)]−1/5

(
F
(
Kopt

2

)
(D2,U,a (u0) +D3,U (u0))

)1/5
T−1/5,

where

D3,U (u0) =
∞∑

h1=−∞

∞∑
h2=−∞

κPU ,aV,Tu0 (h1, 0, h2) ,

and Kopt
2 (x) = 6x (1− x) , 0 ≤ x ≤ 1. In addition, if {Vt} is Gaussian, then D3,U (u0) = 0 for all

u0 ∈ (0, 1).

We now obtain the optimal K1 (·) and b1,T as a function of bopt
2,T (·) and Kopt

2 (·). For some

results below, we consider a subset of K1 defined by K̃1 = {K1 (·) ∈ K1| K̃ (ω) ≥ 0 ∀ω ∈ R}
where K̃ (ω) = (2π)−1 ´∞

−∞K1 (x) e−ixωdx. The function K̃ (ω) is referred to as the spectral window

generator corresponding to the kernel K1 (·). The set K̃1 contains all kernels K1 that generate

positive semidefinite estimators in finite samples. K̃1 contains the Bartlett, Parzen, and QS

kernels, but not the truncated or Tukey-Hanning kernels. We adopt the notation ĴT (b1,T ) =
ĴT (b1,T , b2,T , K2,0) for the estimator ĴT that uses K2,0 (·) ∈ K2, b1,T and b2,T = b

opt
2,T + o(T−1/5)

where b
opt
2,T =

´ 1
0 b

opt
2,T (u) du. Let ĴQS

T (b1,T ) denote the estimator based on the QS kernel KQS
1 (·).

We then compare two kernels K1 using comparable bandwidths b1,T which are defined as follows.

Given K1 (·) ∈ K̃1, the QS kernel KQS
1 (·), and a bandwidth sequence {b1,T} to be used with the

QS kernel, define a comparable bandwidth sequence {b1,T,K1} for use with K1 (·) such that both

kernel/bandwidth combinations have the same maximum asymptotic variance over P ∈ P U when
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scaled by the same factor Tb1,T b2,T . This means that b1,T,K1 is such that

lim
T→∞

sup
P∈PU

Tb1,T b2,TMSEP

(
a′
(
ĴQS
T (b1,T )− E

(
J̃QS
T (b1,T )

)
+ JT

)
a
)

= lim
T→∞

sup
P∈PU

Tb1,T b2,TMSEP

(
a′
(
ĴT (b1,T,K1)− E

(
J̃T (b1,T,K1)

)
+ JT

)
a
)
.

This definition yields b1,T,K1 = b1,T/(
´
K2

1 (x) dx). Note that for the QS kernel KQS
1 (x) we have

b1,T,QS = b1,T since
´ (

KQS
1

)2
(x) dx = 1.

Theorem 4.3. Suppose Assumption 3.3 and 4.1-4.3 hold,
´ 1

0 |f
(2)
U,a (u, 0) |du < ∞, and b2,T → 0,

b5
2,TT → η ∈ (0, ∞). For any bandwidth sequence {b1,T} such that b2,T/b1,T → 0, nT/Tb

2
1,T → 0

and Tb5
1,T b2,T → γ ∈ (0, ∞), and for any kernel K1 (·) ∈ K̃1 used to construct ĴT , the QS kernel

is preferred to K1 (·) in the sense that for all a ∈ Rp,

lim inf
T→∞

Tb1,T b2,T

(
sup

P∈PU

MSEP

(
a′ĴT (b1,T,K1) a

)
− sup

P∈PU

MSEP

(
a′ĴQS

T (b1,T ) a
))

= 4γπ2
(ˆ 1

0
f

(2)
U,a (u, 0) du

)2 ˆ 1

0
(K2,0 (x))2 dx×

K2
1,2

(ˆ
K2

1 (y) dy
)4

−
(
KQS

1,2

)2
 ≥ 0.

The inequality is strict if K1 (x) 6= KQS
1 (x) with positive Lebesgue measure.

We now consider the asymptotically optimal choice of b1,T for a given kernel K1 (·) for which

K1,q ∈ (0, ∞) for some q, and given Kopt
2 and b2,T . We continue to use a minimax optimality

criterion. However, unlike the results of Proposition 4.1 and Theorem 4.3, in which an optimal

kernel was found that was the same for any dominating distribution P U,2 and P U , respectively, the

optimal bandwidth b1,T depends on a scalar parameter φ (q) that is a function of PU in addition to

q. Let wr, r = 1, . . . , p be a set of non-negative weights summing to one. We consider a weighted

squared error loss function

L(ĴT , JP,T ) =
p∑
r=1

wr(Ĵ (r,r)
T (b1,T )− J (r,r)

P,T )2.

A common choice is wr = 1/p for r = 1, . . . , p. For a given dominating distribution PU , define

φ (q) =
p∑
r=1

wr

(ˆ 1

0
f

(q)
U,a(r) (u, 0) du

)2

/
p∑
r=1

wr

(ˆ 1

0
fU,a(r) (u, 0) du

)2

, (4.3)

where a(r) is a p-dimensional vector with the r-th element one and all other elements zero. For any

given φ (q) ∈ (0, ∞), let P U (φ) denote some set P U whose dominating distribution PU satisfies
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(4.3).

Theorem 4.4. Suppose Assumption 3.3 and 4.1-4.3 hold. For any given K1 (·) ∈ K1 such that

0 < K1,q < ∞ for some q ∈ (0, ∞), and any given sequence {b1,T} such that b2,T/b1,T → 0,

Tb2q+1
1,T b2,T → γ ∈ (0, ∞), the bandwidth defined by

bopt
1,T = (2qK2

1,qφ (q)Tbopt
2,T/(
ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx))−1/(2q+1),

is optimal in the sense that,

lim inf
T→∞

T 8q/5(2q+1)
(

sup
P∈PU (φ)

EPL
(
ĴT (b1,T ) , JP,T

)
− sup

P∈PU (φ)
EPL

(
ĴT
(
bopt

1,T

)
, JP,T

))
≥ 0,

provided fU,a(r) > 0 and f
(q)
U,a(r) > 0 for some r for which wr > 0. The inequality is strict unless

b1,T = bopt
1,T + o(T−4/5(2q+1)).

4.3 Data-dependent DK-HAC Estimation

In this section we show that the DK-HAC estimators based on data-dependent bandwidths with

similar form as b̂1,T and b̂2,T (cf. Section 2) have the same first-order asymptotic MSE properties

as the estimators based on optimal fixed bandwidth sequences bopt
1,T and bopt

2,T that depend on the

unknown distribution P.

We choose a parametric model for {a(r)′Vt}, r = 1, . . . , p. We use the same locally stationary

AR(1) models as in Section 3, i.e., V
(r)
t = a

(r)′
1 Vt−1 + u

(r)
t with estimated parameters â

(r)
1 (·) and

σ̂(r) (·) . Let θ̂(r) = (
´ 1

0 â
(r)
1 (u) du,

´ 1
0 (σ̂(r)

1 (u))2du, . . . ,
´ 1

0 â
(r)
p (u) du,

´ 1
0 (σ̂(r)

p (u))2du)′, and θ∗P de-

note the probability limit of θ̂. We only consider distributions P for which θ∗P exists. Construct

φ̂ (q) = φ̂D (q) as in Section 2 but using θ̂. The probability limit of φ̂ (q) is denoted by φθ∗ (q).
Let φP (·) be the value of φ (·) from (4.3) obtained when PU is given by the approximating
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distribution with parameter θ∗P . For some φ, φ such that 0 < φ ≤ φ <∞, define

P U,3 , {P ∈ P U : (i) θ̂ P→ θ∗P for some θ∗P ∈ Θ such thatφP (q) ∈
[
φ, φ

]
for any q,

(ii) sup
u∈[0, 1]

|a′ΓPU ,u (k) a| ≤ C3 |k|−l for k = 0, ±1, . . . , for someC3 <∞,

for some l > max{2, (4q + 2) / (2 + q)}, for all a ∈ Rp with ||a|| = 1,

where q is as in K3 and satisfying 8/q − 20q < 6, and q < 11/2,

(iii) sup
k≥1

VarPU

(
a′Γ̂ (k) a

)
= O

(
1/Tbopt

2,T

)
, and

(iv) lim sup
T→∞

EP

 1
SP,T

SP,T∑
k=1

√
Tbopt

2,T

∣∣∣a′Γ̂ (k) a− a′ΓP,T (k) a
∣∣∣
4

≤ C4

for someC4 <∞with SP,T =
⌊
(bopt

1,T )−r
⌋

some r ∈ S (q, b, l)},

where

S (q, b, l) = (max{(b− 3/4− q/2)/ (b− 1) , q/ (l − 1) ,

min {(6 + 4q) /8, 15/16 + 3q/8}),

with b > 1+1/q. The lower bound 0 < φ ≤ φP (q) eliminates any distribution for which φP (·) = 0.

For example, white noise sequences do not belong to P U,3 since then φ (q) = 0. We discuss these

cases at the end of the section. Let

b1,θP ,T = (2qK2
1,qφθ∗

P
(q)Tbopt

2,T/

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx)−1/(2q+1)

denote the optimal bandwidth for the case in which PU equals the approximating parametric

model with parameter θ∗P . Let

D̂2,a (u) ,
bT 4/25c∑

l=−bT 4/25c
a′ĉT (u0, l) [ĉT (u0, l) + ĉT (u0, l + 2k)]′a,

where ĉT is defined as ĉ∗D,T with V̂t in place of V̂ ∗D,t.

Assumption 4.4. (i) We have sup
P∈PU,3

EP

 inf{T/n3,T ,
√
n2,T}

(
φ̂(q)1/(2q+1)−φ1/(2q+1)

θ∗
P

)
φ̂(q)1/(2q+1)

4

= O (1) as T →

∞, where q is as defined in K3, φ̂ (q) ≤ φ < ∞, and n2,T/T + n3,T/T → 0, n10/6
2,T /T → [c2, ∞),

n
10/6
3,T /T → [c3, ∞) with 0 < c2, c3 < ∞; (ii)

√
Tb2,T (u)(D̂2,a (u) − D2,U,a (u)) = OP (1) for all
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u ∈ [0, 1]; (iii) Assumption 3.6-(v,vii) hold.

Any estimator φ̂ based on standard nonparametric estimators of â
(r)
1 (·) and σ̂(r) (·) satisfies

Assumption 4.4-(i). The following result shows that ĴT (b̂1,T , b̂2,T ) has the same asymptotic MSE

properties under P as the estimator ĴT (b1,θP ,T , b
opt
2,T ). Since the asymptotic MSE properties of

estimators with fixed bandwidth parameters have been determined in Section 4.2, from this result

it follows the consistency of ĴT (b̂1,T , b̂2,T ) and its asymptotic optimality properties.

Theorem 4.5. Consider any kernel K1 (·) ∈ K3, q as in K3 and any K2 (·) ∈ K2. Suppose

Assumption 3.3 and 4.1-4.4 hold. Then, for all a ∈ Rp,

T 8q/5(2q+1) sup
P∈PU,3

∣∣∣∣MSEP

(
a′ĴT

(
b̂1,T , b̂2,T

)
a
)
−MSEP

(
a′ĴT

(
b1,θP ,T , b

opt
2,T

)
a
)∣∣∣∣→ 0.

Theorem 4.5 combined with Theorem 4.1 and Theorem 4.2-(iii) establish upper and lower

bounds on the asymptotic MSE. Results on asymptotic minimax optimality for data-dependent

bandwidths parameters can be obtained using Theorem 4.1, Theorem 4.2-(iii) and Theorem 4.4-4.5.

It remains to consider the case φP (·) = 0. When this occurs, φ̂−1 (·) is OP((T/n3,T )2 +n2,T ).
Under the additional condition ((T/n3,T )2 + n2,T )/T 4/5 → O (1) in Assumption 4.4-(i) we have

b̂1,T = OP (1). Thus, ĴT (b̂1,T , b̂2,T )−JT P→ 0 also when the series is white noise. This is important

in applied work because often researchers use robust standard errors even when they are not aware

of whether any dependence is present at all.

5 Small-Sample Evaluations

We now show that the prewhitened DK-HAC estimators lead to HAR inference tests that have

good size proprieties when there is high serial correlation in the data. In fact, we know from the

simulations in Casini (2021) that the prewhitened proposed in this paper improves the size of tests

normalized by the DK-HAC estimators and that the power is similar to the non-prewhitened DK-

HAC estimators where the latter have, in general, superior power properties relative to traditional

LRV estimators. We consider HAR tests in the linear regression model as well as applied to the

forecast evaluation literature, namely the Diebold-Mariano test [cf. Diebold and Mariano (1995)]

and the forecast breakdown test of Giacomini and Rossi (2009).

The linear regression models have an intercept and a stochastic regressor. We focus on

the t-statistics tr =
√
T (β̂(r) − β

(r)
0 )/

√
Ĵ

(r,r)
X,T where ĴX,T is a consistent estimate of the limit of

Var(
√
T (β̂ − β0)) and r = 1, 2. t1 is the t-statistic for the parameter associated to the intercept

while t2 is associated to the stochastic regressor. Two regression models are considered. We run a
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t-test on the intercept in model M1 whereas a t-test on the coefficient of the stochastic regressor

is run in model M2. The models are,

yt = β
(1)
0 + δ + β

(2)
0 xt + et, t = 1, . . . , T, (5.1)

for the t-test on the intercept and

yt = β
(1)
0 + (β(2)

0 + δ)xt + et, t = 1, . . . , T, (5.2)

for the t-test on β
(2)
0 where δ = 0 under the null hypotheses. In model M1 we set β

(1)
0 = 0,

β
(2)
0 = 1, xt ∼ N (1, 1) and et = ρeet−1 + ut, ρ = 0.4, 0.9, ut ∼ N (0, 0.7). Model M2 involves

segmented locally stationary errors: β
(1)
0 = β

(2)
0 = 0, xt = 0.6 + 0.8xt−1 + ux,t, ux,t ∼ N (0, 1)

and et = ρtet−1 + ut, ρt = max {0, 0.8 (cos (1.5− cos (5t/T )))} for t < 4T/5 and et = 0.5et−1 +
ut, ut ∼ i.i.d.N (0, 1) for t ≥ 4T/5. Note that ρt varies smoothly between 0 and 0.7021. Then,

ĴX,T = (X ′X/T )−1ĴT (X ′X/T )−1 where Xt = [1, xt].
Next, we move to the forecast evaluation tests. The Diebold-Mariano test statistic is defined

as tDM , T 1/2
n dL/Ĵ

1/2
dL,T

, where dL is the average of the loss differentials between two competing

forecast models, ĴdL,T is an estimate of the LRV of the loss differentials and Tn is the number of

observations in the out-of-sample. Throughout, we use the quadratic loss. In model M3 we consider

an out-of-sample forecasting exercise with a fixed forecasting scheme where, given a sample of T

observations, 0.5T observations are used for the in-sample and the remaining half is used for

prediction. To evaluate the empirical size of the test, we specify the following data generating

process and the two forecasting models that have equal predictive ability. The The true model for

the target variable is given by yt = β
(1)
0 +β(2)

0 x
(0)
t−1 +et where x

(0)
t−1 ∼ i.i.d.N (1, 1), et = 0.8et−1 +ut

with ut ∼ i.i.d.N (0, 1) and we set β
(1)
0 = 0, β(2)

0 = 1. The two competing models both involve an

intercept but differ on the predictor used in place of x
(0)
t . The first forecast model uses x

(1)
t while

the second uses x
(2)
t where x

(1)
t and x

(2)
t are independent i.i.d.N (1, 1) sequences, both independent

from x
(0)
t . Each forecast model generates a sequence of τ (= 1)-step ahead out-of-sample losses L

(i)
t

(i = 1, 2) for t = T/2 + 1, . . . , T − τ. Then dt , L
(2)
t − L

(1)
t denotes the loss differential at time

t. The Diebold-Mariano test rejects the null of equal predictive ability when (after normalization)

dL is sufficiently far from zero.

Next, we specify the alternative hypotheses for the Diebold-Mariano test. The two competing

forecast models are as follows: the first model uses the actual true data-generating process while

the second model differs in that in place of x
(0)
t−1 it uses x

(2)
t−1 = x

(0)
t−1 + uX2,t for t ≤ 3T/4 and

x
(2)
t−1 = δ+ x

(0)
t−1 + uX2,t for t > 3T/4, with uX2,t ∼ i.i.d.N (0, 1). Evidently, the null hypotheses of

equal predictive ability should be rejected whenever δ > 0.
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Finally, we consider model M4 which we use for investigating the performance of a t-test

for forecast breakdown [cf. Giacomini and Rossi (2009)]. Suppose we want to forecast a variable

yt which follows the following equation: yt = β
(1)
0 + β

(2)
0 xt−1 + δxt−11{t > T 0

1 } + et where xt ∼
i.i.d.N (1.5, 1.5) and et = 0.3et−1 + ut with ut ∼ i.i.d.N (0, 0.7), β(1)

0 = β
(2)
0 = 1 and T 0

1 = Tλ0
1

with λ0
1 = 0.85. The test of Giacomini and Rossi (2009) detects a forecast breakdown when the

average of the out-of-sample losses differs significantly from the average of the in-sample losses.

The in-sample is used to obtain estimates of β
(1)
0 and β

(2)
0 which are in turn used to construct

out-of-sample forecasts ŷt = β̂
(1)
0 + β̂

(2)
0 xt−1. The test is defined as tGR , T 1/2

n SL/Ĵ
1/2
SL where

SL , T−1
n

∑T−τ
t=Tm+1 SLt+τ , SLt+τ is the surprise loss at time t+ τ (i.e., the difference between the

time t + τ out-of-sample loss and in-sample-average loss, SLt+τ = Lt+τ − Lt+τ , Tn is the sample

size in the out-of-sample, Tm is the sample size in the in-sample and ĴSL is an HAC estimator).

We consider a fixed forecasting scheme and τ = 1.
We consider the following DK-HAC estimators: ĴT,pw,SLS = ĴT,pw as discussed in Section 2,

ĴT,pw,1 which uses prewhitening with a single block [nT = T in (2.4)] (i.e., stationary prewhitening),

ĴT,pw,SLS,µ which uses prewhitening involving a VAR(1) with time-varying intercept [i.e., with µ̂t in

(2.4)]. The asymptotic properties of ĴT,pw,SLS,µ are the same as those of ĴT,pw,SLS since µ̂t plays no

role in the theory given the zero-mean assumption on {Vt}. However, it leads to power enhance-

ment under nonstationary alternative hypotheses. The asymptotic properties of ĴT,pw,1 follows as a

special case from the properties of ĴT,pw,SLS. We set nT = n2,T = n3,T = T 2/3. For the test of Giaco-

mini and Rossi (2009) we do not report the results for ĴT,pw,1 because the stationarity assumption

is clearly violated under the alternative. We compare tests using these estimators to those using

the following estimates: Andrews’s (1991) HAC estimator with automatic bandwidth; Andrews’s

(1991) HAC estimator with automatic bandwidth and the prewhitening procedure of Andrews

and Monahan (1992); Newey and West’s (1987) HAC estimator with the automatic bandwidth as

proposed in Newey and West (1994); Newey and West’s (1987) HAC estimator with the automatic

bandwidth as proposed in Newey and West (1994) and the prewhitening procedure; Newey-West

with the fixed-b method of Kiefer, Vogelsang, and Bunzel (2000); the Empirical Weighted Cosine

(EWC) of Lazarus, Lewis, Stock, and Watson (2018). We consider the following sample sizes:

T = 200, 400 for M1-M2 and T = 400, 800 for model M3-M4. We set Tm = 200, 400 for M3 and

Tm = 240, 480 for M4. The nominal size is α = 0.05 throughout.

Table 1-2 report the rejection rates under the null hypothesis for model M1-M4. We begin

with the t-test in the linear regression models, i.e., model M1 with medium dependence (ρ = 0.4).

The prewhitened DK-HAC estimators lead to tests with accurate rejection rates that are slightly

better than those obtained with Newey-West with fixed-b and to EWC. In contrast, the classical

HAC estimators of Andrews (1991) and Newey and West (1987) are less accurate with rejection
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rates higher than the nominal level. The prewhitening of Andrews and Monahan (1992) helps to

reduce the size distortions but they still persist for the Newey-West estimator even for T = 400.
For higher temporal dependence (i.e., ρ = 0.9), using EWC and ĴT,pw,SLS,µ yield oversized tests,

though by a small margin. The best size control is achieved using the Newey-West with fixed-b

(KVB), ĴT,pw,1 and ĴT,pw,SLS.

For model M2, Newey-West with fixed-b and the prewhitened DK-HAC (ĴT,pw,1, ĴT,pw,SLS, ĴT,pw,µ)
allow accurate rejection rates. In some cases, tests based on the prewhitened DK-HAC are superior

to those based on fixed-b (KVB). The tests with EWC is slightly oversized when T = 200 but close

to the nominal level when T = 400. The classical HAC of Andrews (1991) and Newey and West

(1987), either prewhitened or not, imply tests with rejection rates well beyond the nominal level

T = 200.
Turning to the HAR tests for forecast evaluation, Table 2 report some striking results. First,

tests based on the Newey-West with fixed-b (KVB) have size essentially equal to zero, while those

based on the EWC and prewhitened or non-prewhitened classical HAC estimators are oversized.

The prewhitened DK-HAC allows more accurate test. For model M4, many of the tests have size

equal to or close to zero. This occurs using the classical HAC, either prewhitened or not and EWC.

The prewhitened DK-HAC estimators and Newey-West with fixed-b (KVB) allow controlling the

size reasonably well. Overall, Table 1-2 in part confirm previous power evidence and in part suggest

new facts. It is verified that in general Newey-West with fixed-b (KVB) leads to better size control

than using the classical HAC estimators of Andrews (1991) and Newey and West (1987) even

when the latter are used in conjunction with the prewhitening device of Andrews and Monahan

(1992). The new result is that several of the LRV estimators proposed in the literature can lead

to tests having size equal to or close to zero. This occurs because the null hypotheses involves

nonstationary data generating mechanisms. These LRV estimators are inflated and the associated

test statistics are undersized. This is expected to have negative consequences for the power of the

tests, as we will see below. The estimators proposed in this paper perform well in controlling the

size for all cases. They are in general competitive with using the Newey-West with fixed-b (KVB)

when the latter does not fail and in some cases can also outperform it.

Table 3-4 report the empirical power of the tests for model M1-M4. For model M1 with

ρ = 0.9 and M2 we see that all tests have good and monotonic power. It is fair to compare tests

based on the DK-HAC estimators relative to using Newey-West with fixed-b (KVB) since they have

similar well-controlled size. Tests based on the Newey-West with fixed-b (KVB) sacrifices power

more than using the DK-HAC and the difference is substantial. The classical HAC estimators have

higher power but it is unfair to compare them since they are often oversized. A similar argument

applies to using the EWC.
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We now move to the forecast evaluation tests. For both models M3 and M4 we observe several

features of interests. Essentially all tests proposed experience severe power issues. The power is

either non-monotonic, very low or equal zero. This holds when using the classical HAC estimators

of Andrews (1991) as well as Newey and West (1987) irrespective of whether prewhitening is used,

with the EWC and the Newey-West with fixed-b (KVB). The only exceptions are tests based

on the Newey-West’s (1987) and Andrews’ (1991) HAC estimator with prewhitening in model

M4 that display some power but much lower compared to using the prewhitened DK-HAC. The

latter have excellent power. The reason for the severe power problems for many of the previous

LRV-based tests is that models M3 and M4 involve nonstationary alternative hypotheses. The

sample autocovariances become inflated and overestimate the true autocovariances. From Casini

et al. 2021 , this issue becomes more severe as δ increases, which explains the non-monotonic

power for some of the tests, with tests based on fixed-b methods that include many lags suffering

most. The double smoothing in the DK-HAC avoids this problem because it flexibly accounts for

nonstationarity. The key idea is not to mix observations belonging to different regimes.

6 Conclusions

We used restrictions on nonstationarity in the form of segmented local stationarity to derive MSE

bounds for LRV estimation. The new bounds are sharper and more informative than those deri-

ved previously. They also show how nonstationarity in influences the bias-variance trade-o. We

used them to construct new data-dependent methods for the selection of bandwidths for recently

proposed DK-HAC estimators.We derived asymptotic results for the DK-HAC estimators under

general nonstationarity, including optimality of bandwidths and kernels. In order to improve the

rejection rates of HAR tests normalized by DK-HAC estimators we introduced a novel nonpara-

metric nonlinear VAR prewhitened LRV estimators and we discussed its large-sample properties.

Unlike previously suggested prewhitening procedures, our prewhitening method is not sensitive

to estimation error induced by nonstationarity in the whitening step. In a simulation study, we

find that overall the new prewhitened DK-HAC estimators lead to tests with better properties

than previous LRV estimators. It allows tests with empirical size close to the nominal level under

the null hypothesis and higher power functions that, in particular, are monotonically increasing

as the alternative hypothesis gets farther away from the null specification. Computer packages in

Matlab,R and Stata that implement the methods in the paper are available online.
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A Appendix

A.1 Tables

Table 1: Empirical small-sample size of t-test for model M1-M2
M1, ρ = 0.4 M1, ρ = 0.9 M2

α = 0.05 T = 200 T = 400 T = 200 T = 400 T = 200 T = 400

ĴT , QS, prew 0.054 0.045 0.085 0.065 0.061 0.053

ĴT , QS, prew, SLS 0.052 0.043 0.086 0.051 0.065 0.054

ĴT , QS, prew, SLS, µ 0.049 0.048 0.103 0.092 0.063 0.054

Andrews 0.082 0.065 0.162 0.118 0.095 0.050

Andrews, prew 0.063 0.057 0.104 0.083 0.077 0.048

Newey-West 0.114 0.090 0.351 0.272 0.138 0.057

Newey-West, prew 0.075 0.064 0.110 0.077 0.090 0.059

Newey-West, fixed-b (KVB) 0.058 0.056 0.091 0.066 0.069 0.052

EWC 0.058 0.055 0.149 0.113 0.071 0.048

Table 2: Empirical small-sample size for model M3-M4
M3 M4

α = 0.05 T = 400 T = 800 T = 400 T = 800

ĴT , QS, prew, SLS 0.065 0.060 0.071 0.066

ĴT , QS, prew, SLS, µ 0.065 0.061 0.077 0.067

Andrews 0.082 0.073 0.000 0.000

Andrews, prew 0.080 0.074 0.005 0.000

Newey-West 0.080 0.074 0.000 0.000

Newey-West, prew 0.078 0.073 0.000 0.000

Newey-West, fixed-b (KVB) 0.002 0.002 0.074 0.061

EWC 0.080 0.074 0.018 0.022
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Table 3: Empirical small-sample power of t-test for model M1-M2
M1 M2

α = 0.05, T = 400 δ = 0.5 δ = 1 δ = 2 δ = 0.1 δ = 0.2 δ = 0.4

ĴT , QS, prew 0.344 0.807 1.000 0.387 0.889 1.000

ĴT , QS, prew, SLS 0.378 0.787 1.000 0.330 0.813 1.000

ĴT , QS, prew, SLS, µ 0.463 0.849 1.000 0.347 0.833 1.000

Andrews 0.430 0.864 1.000 0.450 0.922 1.000

Andrews, prew 0.360 0.812 1.000 0.433 0.911 1.000

Newey-West 0.630 0.958 1.000 0.511 0.938 1.000

Newey-West, prew 0.363 0.811 1.000 0.443 0.911 1.000

Newey-West, fixed-b (KVB) 0.274 0.655 0.980 0.329 0.758 0.990

EWC 0.436 0.886 1.000 0.392 0.890 1.000

Table 4: Empirical small-sample power for model M3-M4
M3 M4

α = 0.05, T = 400 δ = 0.5 δ = 2 δ = 6 δ = 0.5 δ = 1 δ = 2

ĴT , QS, prew, SLS 0.495 0.920 1.000 0.613 0.923 1.000

ĴT , QS, prew, SLS, µ 0.498 0.940 1.000 0.663 0.957 1.000

Andrews 0.158 0.014 0.000 0.000 0.043 0.073

Andrews, prew 0.224 0.056 0.000 0.351 0.942 0.952

Newey-West 0.179 0.302 0.587 0.019 0.821 1.000

Newey-West, prew 0.137 0.014 0.000 0.003 0.278 0.722

Newey-West, fixed-b (KVB) 0.059 0.008 0.000 0.000 0.000 0.000

EWC 0.087 0.018 0.000 0.062 0.000 0.000
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S.A Mathematical Appendix

In some of the proofs below β is understood to be on the line segment joining β̂ and β0. We discard the
degrees of freedom adjustment T/ (T − p) from the derivations since asymptotically it does not play any
role. Similarly, we use T/nT in place of (T − nT ) /nT in the expression for Γ̂∗D (k) and Γ̂ (k). We collect
the break dates in T , {T 0

1 , . . . , T
0
m0}.

S.A.1 Proofs of the Results in Section 3

S.A.1.1 Proof of Theorem 3.1

Let

Ĵ∗T = Ĵ∗T (bθ1,T , bθ2,T ) ,
T−1∑

k=−T+1
K1 (bθ1,Tk) Γ̂∗ (k),

where Γ̂∗ (k) , nT
T

∑bT/nT c
r=0 ĉ∗T (rnT /T, k) and

ĉ∗T (rnT /T, k) ,

(Tb2,T )−1∑T
s=k+1K

∗
2

(
((r+1)nT−(s−k/2))/T

bθ2,T

)
V̂ ∗s V̂

∗′
s−k, k ≥ 0

(Tb2,T )−1∑T
s=−k+1K

∗
2

(
((r+1)nT−(s+k/2))/T

bθ2,T

)
V̂ ∗s+kV̂

∗′
s , k < 0

, (S.1)

with V̂ ∗s = V ∗s (β̂) where β̂ is elongated to include Â·,j (j = 1, . . . , pA). Define J̃∗T as equal to Ĵ∗T but with
V ∗t = Vt−

∑pA
j=1Ar,jVt−j in place of V̂ ∗s and define J∗T as equal to JT but with V ∗t in place of Vt (β0). The

proof uses the following decomposition,

Ĵpw,T − JT =
(
Ĵpw,T − J∗T,D̂

)
+
(
J∗
T,D̂
− J∗T,D

)
+
(
J∗T,D − JT

)
, (S.2)

where J∗T,D = T−1∑T
s=pA+1

∑T
t=pA+1DsE(V ∗s V ∗′t )D′t, and J∗

T,D̂
is equal to J∗T,D but with D̂s in place of

Ds.

Lemma S.A.1. Under the assumptions of Theorem 3.1-(i), we have

Ĵ∗T (bθ1,T , bθ2,T )− J∗T = oP (1) . (S.3)

Proof. Under Assumption 3.2, ||
´ 1

0 f
∗(0) (u, 0) || < ∞ where f∗ is defined analogously to f∗D but with

Ds = 1 for all s. In view of K1,0 = 0, Theorem 3.1-(i,ii) in Casini (2021) [with q = 0 in part (ii)]
implies J̃∗T − J∗T = oP (1). Note that the assumptions of the aforementioned theorem are satisfied by
{V ∗t } since they correspond to Assumption 3.1-3.2 here. Noting that Ĵ∗T − J̃∗T = oP (1) if and only if
a′Ĵ∗Ta − a′J̃∗Ta = oP (1) for arbitrary a ∈ Rp we shall provide the proof only for the scalar case. We
show that

√
nT bθ1,T (Ĵ∗T − J̃∗T ) = OP (1). Let J̃∗T (β) denote the estimator that uses {V ∗t (β)} where β is

elongated to include A·,j (j = 1, . . . , pA). A mean-value expansion of J̃∗T (β̂)(= Ĵ∗T ) about β0 (elongated
to include A·,j (j = 1, . . . , pA)) yields

√
nT bθ1,T (Ĵ∗T − J̃∗T ) = bθ1,T

∂

∂β′
J̃∗T (β̄)

√
nT (β̂ − β0)

= bθ1,T

T−1∑
k=−T+1

K1 (bθ1,Tk) ∂

∂β′
Γ̂∗ (k) |β=β̄

√
nT (β̂ − β0), (S.4)
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for some β̄ on the line segment joining β̂ and β0. Note also that ĉ∗(rnT /T, k) depends on β although we
have omitted it. We have for k ≥ 0 (the case k < 0 is similar and omitted),

∥∥∥ ∂

∂β′
ĉ∗ (rnT /T, k)

∥∥∥|β=β̄ (S.5)

=
∥∥∥∥∥(Tbθ2,T )−1

T∑
s=k+1

K∗2

(
(r + 1)nT − (s+ k/2)

Tbθ2,T

)

×
(
V ∗s (β) ∂

∂β′
V ∗s−k (β) + ∂

∂β′
V ∗s (β)V ∗s−k (β)

)∥∥∥∥∥|β=β̄

≤ 2

(Tbθ2,T )−1
T∑
s=1

K∗2

(
(r + 1)nT − (s+ k/2)

Tbθ2,T

)2

sup
s≥1

sup
β

(V ∗s (β))2

1/2

×

(Tbθ2,T )−1
T∑
s=1

K∗2

(
(r + 1)nT − (s+ k/2)

Tbθ2,T

)2

sup
s≥1

sup
β

∥∥∥∥ ∂

∂β′
V ∗s (β)

∥∥∥∥2
1/2

= OP (1) ,

where we have used the boundedness of the kernel K2 (and thus of K∗2 ), Assumption 3.3-(ii,iii) and
Markov’s inequality to each term in parentheses; also sups≥1 E supβ ||V ∗s (β) ||2 < ∞ under Assumption
3.3-(ii,iii) by a mean-value expansion and,

(Tbθ2,T )−1
T∑

s=k+1
K∗2 (((r + 1)nT − (s+ k/2)) /Tbθ2,T )2 →

ˆ 1

0
K2

2 (x) dx <∞. (S.6)

Then, (S.4) is such that

bθ1,T

T−1∑
k=T+1

K1 (bθ1,T , k) ∂

∂β′
Γ̂∗ (k) |β=β̄

√
nT
(
β̂ − β0

)

= bθ1,T

T−1∑
k=−T+1

K1 (bθ1,Tk) nT
T

T/nT∑
r=0

OP (1)OP (1)

= OP (1) ,

where the last equality uses bθ1,T
∑T−1
k=−T+1 |K1(bθ1,Tk)| →

´
|K1 (x) |dx <∞. This concludes the proof of

the lemma because
√
nT bθ1,T →∞ by assumption. �

Lemma S.A.2. Under the assumptions of Theorem 3.1-(i), we have

Ĵ∗T (bθ1,T , bθ2,T )− Ĵ∗T
(
b̂∗1,T , b̂

∗
2,T

)
= oP (1) . (S.7)

Proof. Let ST =
⌊
b−rθ1,T

⌋
and

r ∈ ( max {(12b− 10q − 5) /12 (b− 1) , (b− 1/2− q) / (b− 1) , q/ (l − 1)}
min {(10q + 17) /24, (3 + 2q) /4, 5q/6 + 5/12, 1}).

S-2



long-run variance estimation under nonstationarity

We will use the following decomposition,

Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T ) =

(
Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T

(
bθ1,T , b̂

∗
2,T

))
(S.8)

+
(
Ĵ∗T

(
bθ1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T )

)
.

LetN1 , {−ST , −ST + 1, . . . , −1, 1, . . . , ST − 1, ST }, andN2 , {−T + 1, . . . , −ST − 1, ST + 1, . . . , T − 1}.
Let us consider the first term above,

Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− ĴT

(
bθ1,T , b̂

∗
2,T

)
(S.9)

=
∑
k∈N1

(
K1

(
b̂∗1,Tk

)
−K1 (bθ1,Tk)

)
Γ̂∗ (k)

+
∑
k∈N2

K1
(
b̂∗1,Tk

)
Γ̂∗ (k)−

∑
k∈N2

K1 (bθ1,Tk) Γ̂∗ (k)

, A1,T +A2,T −A3,T .

We first show that A1,T
P→ 0. Let A1,1,T denote A1,T with the summation restricted over positive integers

k. Let ñT = inf
{
T/n3,T ,

√
n2,T

}
. We can use the Liptchitz condition on K1 (·) ∈K3 to yield,

|A1,1,T | ≤
ST∑
k=1

C2
∣∣∣b̂∗1,T − bθ1,T

∣∣∣ k ∣∣∣Γ̂∗ (k)
∣∣∣ (S.10)

≤ C
∣∣∣φ̂D (q)1/(2q+1) − φ1/(2q+1)

θ∗

∣∣∣ (φ̂D (q)φθ∗

)−1/(2q+1) (
T b̂∗2,T

)−1/(2q+1) ST∑
k=1

k
∣∣∣Γ̂∗ (k)

∣∣∣ ,
for some C <∞. By Assumption 3.6-(i),∣∣∣φ̂D (q)1/(2q+1) − φ1/(2q+1)

θ∗

∣∣∣ (φ̂D (q)φθ∗

)−1/(2q+1)
= OP (1) .

Using the delta method it suffices to show that B1,T +B2,T +B3,T
P→ 0, where

B1,T =
(
T b̂∗2,T

)−1/(2q+1) ST∑
k=1

k
∣∣∣Γ̂∗ (k)− Γ̃∗ (k)

∣∣∣ (S.11)

B2,T =
(
T b̂∗2,T

)−1/(2q+1) ST∑
k=1

k
∣∣∣Γ̃∗ (k)− Γ∗T (k)

∣∣∣
B3,T =

(
T b̂∗2,T

)−1/(2q+1) ST∑
k=1

k |Γ∗T (k)| ,

with Γ∗T (k) , (nT /T )
∑bT/nT c
r=0 c∗ (rnT /T, k) . By a mean-value expansion, we have

B1,T ≤
(
T b̂∗2,T

)−1/(2q+1)
n
−1/2
T

ST∑
k=1

k

∣∣∣∣( ∂

∂β′
Γ̂∗ (k) |β=β

)√
nT
(
β̂ − β0

)∣∣∣∣ (S.12)
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≤ C
(
T b̂∗2,T

)−1/(2q+1) (
Tbθ2,T

)2r/(2q+1)
n
−1/2
T sup

k≥1

∥∥∥∥ ∂∂β Γ̂∗ (k) |β=β

∥∥∥∥√nT ∥∥∥β̂ − β0
∥∥∥ ,

since r < (10q + 17) /24, and supk≥1 || (∂/∂β) Γ̂∗ (k) |β=β|| = OP (1) using (S.5) and Assumption 3.3-(ii,iii)
(the latter continue to hold for {V ∗t }). In addition,

E
(
B2

2,T

)
≤ E

(T b̂∗2,T)−2/(2q+1) ST∑
k=1

ST∑
j=1

kj
∣∣∣Γ̃∗ (k)− Γ∗T (k)

∣∣∣ ∣∣∣Γ̃∗ (j)− Γ∗T (j)
∣∣∣
 (S.13)

≤
(
T b̂∗2,T

)−2/(2q+1)−1
S4
T sup
k≥1

T b̂∗2,TVar
(
Γ̃∗ (k)

)
≤
(
T b̂∗2,T

)−2/(2q+1)−1 (
Tbθ2,T

)4r/(2q+1)
sup
k≥1

T b̂∗2,TVar
(
Γ̃∗ (k)

)
≤
(
b̂∗2,T

)−2/(2q+1)−1
T−1−2/(2q+1)T 16r/5(2q+1) sup

k≥1
T b̂∗2,TVar

(
Γ̃∗ (k)

)
→ 0,

given that r < (3 + 2q) /4 and supk≥1 T b̂
∗
2,TVar(Γ̃∗(k)) = O (1) by Lemma S.B.5 in Casini (2021) that

also holds with Γ̃∗ (k) in place of Γ̃ (k). Next,

B3,T ≤
(
T b̂∗2,T

)−1/(2q+1)
ST

∞∑
k=1
|Γ∗T (k)| (S.14)

≤
(
T b̂∗2,T

)(r−1)/(2q+1)
OP (1)→ 0,

using Assumption 3.2-(i) since r < 1. This gives A1,T
P→ 0. Next, we show that A2,T

P→ 0. Let
A2,1,T = L1,T + L2,T + L3,T , where

L1,T =
T−1∑

k=ST+1
K1

(
b̂∗1,Tk

) (
Γ̂∗ (k)− Γ̃∗ (k)

)
, (S.15)

L2,T =
T−1∑

k=ST+1
K1

(
b̂∗1,Tk

) (
Γ̃∗ (k)− Γ∗T (k)

)
, and

L3,T =
T−1∑

k=ST+1
K1

(
b̂∗1,Tk

)
Γ∗T (k) .

We apply a mean-value expansion and use
√
nT (β̂ − β0) = OP (1) as well as (S.5) to obtain

|L1,T | = n
−1/2
T

T−1∑
k=ST+1

C1
(
b̂∗1,Tk

)−b ∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣ (S.16)

= T−1/3+4b/5(2q+1)
T−1∑

k=ST+1
C1k

−b
∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
= T−1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)

∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
= T−1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)O (1)OP (1) ,
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which converges to zero since r > (12b− 10q − 5) /12 (b− 1). Next,

|L2,T | =
T−1∑

k=ST+1
C1
(
b̂∗1,Tk

)−b ∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣ (S.17)

= C1
(
qK2

1,qφ̂D (q)
)b/(2q+1)

T b/(2q+1)−1/2
(
b̂∗2,T

)
b/(2q+1)−1/2

 T−1∑
k=ST+1

k−b

√T b̂∗2,T ∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣ .

Note that,

E

T b/(2q+1)−1/2
(
b̂∗2,T

)b/(2q+1)−1/2 T−1∑
k=ST

k−b
√
T b̂∗2,T

∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣
2

(S.18)

≤ T 2b/(2q+1)−1
(
b̂∗2,T

)
2b/(2q+1)−1

 T−1∑
k=ST

k−b

2

O (1)

= T 2b/(2q+1)−1
(
b̂∗2,T

)
2b/(2q+1)−1S

2(1−b)
T O (1)→ 0,

since r > (b− 1/2− q)/(b− 1) and T b̂∗2,TVar(Γ̃∗(k)) = O (1), as above. Equations (S.17)-(S.18) combine

to yield L2,T
P→ 0, since φ̂D (q) = OP (1) by Assumption 3.6-(i). Let us turn to L3,T . We have,∣∣∣∣∣∣

T−1∑
k=ST+1

K1
(
b̂∗1,Tk

)
Γ∗T (k)

∣∣∣∣∣∣ ≤
T−1∑

k=ST+1

nT
T

bT/nT c∑
r=0

|c∗ (rnT /T, k)| (S.19)

≤
T−1∑

k=ST+1
sup

u∈[0, 1]
|c∗ (u, k)| → 0.

Equations (S.16)-(S.19) imply A2,T
P→ 0. An analogous argument yields A3,T

P→ 0. It remains to show

that (ĴT (bθ1,T , b̂
∗
2,T )− ĴT (bθ1,T , bθ2,T )) P→ 0. Its proof is the same as in Theorem 5.1-(i) in Casini (2021)

which can be repeated given the conditions n
−1/2
T /(b̂∗1,T )→ 0, r < 5q/6+5/12, and r > (b−1/2−q)/(b−1).

�

Lemma S.A.3. Under the assumptions of Theorem 3.1-(ii), we have√
Tbθ1,T bθ2,T

(
Ĵ∗T (bθ1,T , bθ2,T )− J∗T

)
= OP (1) .

Proof. Write√
Tbθ1,T bθ2,T

(
Ĵ∗T (bθ1,T , bθ2,T )− J∗T

)
=
√
Tbθ1,T bθ2,T

(
Ĵ∗T (bθ1,T , bθ2,T )− J̃∗T + J̃∗T − J∗T

)
.

Applying Theorem 3.1-(ii) in Casini (2021) with V ∗s in place of Vs, we have
√
Tbθ1,T bθ2,T (J̃∗T−J∗T ) = OP (1).

Thus, it is sufficient to show
√
Tbθ1,T bθ2,T (Ĵ∗T (bθ1,T , bθ2,T )−J̃∗T ) = oP (1) . A second-order Taylor expansion

gives

√
Tbθ1,T bθ2,T

(
Ĵ∗T − J̃∗T

)
=
[√

Tbθ2,T√
nT

√
bθ1,T

∂

∂β′
J̃∗T (β0)

]
√
nT
(
β̂ − β0

)
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+ 1
2
√
nT
(
β̂ − β0

)′ [√Tbθ2,T

nT

√
bθ1,T

∂2

∂β∂β′
J̃∗T

(
β
)]√

nT
(
β̂ − β0

)
, G′T

√
nT
(
β̂ − β0

)
+ 1

2
√
nT
(
β̂ − β0

)′
HT
√
nT
(
β̂ − β0

)
.

Using Assumption 3.4-(ii),∥∥∥∥ ∂2

∂β∂β′
ĉ∗ (rnT /T, k)

∥∥∥∥∣∣∣∣
β=β̄

=

∥∥∥∥∥∥(Tbθ2,T )−1
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

bθ2,T

)(
∂2

∂β∂β′
V ∗s (β)V ∗s−k (β)

)∥∥∥∥∥∥
∣∣∣∣
β=β̄

= OP (1) ,

and thus,

‖HT ‖ ≤
(
Tbθ2,T bθ1,T

n2
T

)1/2 T−1∑
k=−T+1

|K1 (bθ1,Tk)| sup
β∈Θ

∥∥∥∥∥ ∂2

∂β∂β′
Γ̂∗ (k)

∥∥∥∥∥
≤
(
Tbθ2,T bθ1,T

n2
T

)1/2 T−1∑
k=−T+1

|K1 (bθ1,Tk)|OP (1)

≤
(
Tbθ2,T

n2
T bθ1,T

)1/2

bθ1,T

T−1∑
k=−T+1

|K1 (bθ1,Tk)|OP (1) = oP (1) ,

since Tbθ2,T /(n2
T bθ1,T )→ 0. Next, we want to show that GT = oP (1). Following Andrews (1991) (cf. the

last paragraph of p. 852), we apply the results of Theorem 3.1-(i,ii) in Casini (2021) to J̃∗T where the
latter is constructed using (V ∗′t, ∂V ∗t /∂β′ − E(∂V ∗t /∂β′))′ rather than just with V ∗t . The first row and
column of the off-diagonal elements of this J̃∗T (written as column vectors) are now

A1 ,
T−1∑

k=−T+1
K1 (bθ1,Tk) nT

T

T/nT∑
r=0

1
Tbθ2,T

×
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

bθ2,T

)
V ∗s

(
∂

∂β
V ∗s−k − E

(
∂

∂β
V ∗s

))

A2 ,
T−1∑

k=−T+1
K1 (bθ1,Tk) nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

bθ2,T

)(
∂

∂β
V ∗s − E

(
∂

∂β
V ∗s

))
V ∗s−k.

By Theorem 3.1-(i,ii) in Casini (2021) each expression above is OP (1). Given,

GT ≤
√
Tbθ2,T√
nT

√
bθ1,T (A1 +A2) +

√
Tbθ2,T√
nT

√
bθ1,T

T−1∑
k=−T+1

K1 (bθ1,Tk) nT
T

T/nT∑
r=0

1
Tbθ2,T
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×
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

bθ2,T

) ∣∣∣∣(V ∗s + V ∗s−k
)
E
(
∂

∂β
V ∗s

)∣∣∣∣
,

√
Tbθ2,T√
nT

√
bθ1,T (A1 +A2) +A3 sup

s

∣∣∣∣E( ∂

∂β
V ∗s

)∣∣∣∣ ,
and the fact that Tbθ2,T bθ1,T /nT → 0 it remains to show that A3 is oP (1) . Note that

E
(
A2

3

)
≤ Tbθ2,T

nT
b1,T

T−1∑
k=−T+1

T−1∑
j=−T+1

|K1 (bθ1,Tk)K1 (bθ1,T j)| 4
(
nT
T

)2 T/nT∑
r=0

T/nT∑
b=0

× 1
Tbθ2,T

1
Tbθ2,T

T∑
s=1

T∑
l=1

K∗2

(
((r + 1)nT − (s+ k/2)) /T

bθ2,T

)

×K∗2

(
((b+ 1)nT − (l + j/2)) /T

bθ2,T

)
|E (V ∗s V ∗l )| ,

and that E (V ∗s V ∗l ) = c∗ (u, h) +O
(
T−1) uniformly in h = s− l and u = s/T by Lemma S.B.1 in Casini

(2021). Since
∑∞
h=−∞ supu∈[0, 1] |c∗ (u, h)| <∞,

E
(
A2

3

)
≤ 1
nT bθ1,T

bθ1,T

T−1∑
k=−T+1

|K1 (bθ1,Tk)|

2 ˆ 1

0
K2

2 (x) dx
ˆ 1

0

∞∑
h=−∞

|c∗ (u, h)| du = o (1) .

This implies GT = oP (1) which concludes the proof. �

Lemma S.A.4. Under the assumptions of Theorem 3.1-(ii), we have√
Tbθ1,T bθ2,T

(
Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T )

)
= oP (1) .

Proof. Let

r ∈(max{{{(−10 + 4q + 24b) /24 (b− 1)}, {(b− 1/2) / (b− 1)} for b > max (1 + 1/q, 4)},
{{(8b− 4) / (b− 1) (10q + 5)}, {(b− 2/3− q/3) / (b− 1)} for b > 1 + 1/q}, q/ (l − 1)},

min {16q/48 + 44/48, 46/48 + 20q/48, 2/3 + q/3}),

and ST =
⌊
b−rθ1,T

⌋
. We will use the following decomposition

Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T ) =

(
Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T

(
bθ1,T , b̂

∗
2,T

))
(S.20)

+
(
Ĵ∗T

(
bθ1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T )

)
.

LetN1 , {−ST , −ST + 1, . . . , −1, 1, . . . , ST − 1, ST }, andN2 , {−T + 1, . . . , −ST − 1, ST + 1, . . . , T − 1}.
Let us consider the first term above,

T 8q/10(2q+1)
(
Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T

(
bθ1,T , b̂

∗
2,T

))
(S.21)

= T 8q/10(2q+1) ∑
k∈N1

(
K1

(
b̂∗1,Tk

)
−K1 (bθ1,Tk)

)
Γ̂∗ (k)
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+ T 8q/10(2q+1) ∑
k∈N2

K1
(
b̂∗1,Tk

)
Γ̂∗ (k)

− T 8q/10(2q+1) ∑
k∈N2

K1 (bθ1,Tk) Γ̂∗ (k)

, A1,T +A2,T −A3,T .

We first show that A1,T
P→ 0. Let A1,1,T denote A1,T with the summation restricted over positive integers

k. Let ñT = inf{T/n3,T ,
√
n2,T }. We can use the Liptchitz condition on K1 (·) ∈K3 to yield,

|A1,1,T | ≤ T 8q/10(2q+1)
ST∑
k=1

C2
∣∣∣b̂∗1,T − bθ1,T

∣∣∣ k ∣∣∣Γ̂∗ (k)
∣∣∣ (S.22)

≤ CñT
∣∣∣φ̂D (q)1/(2q+1) − φ1/(2q+1)

θ∗

∣∣∣ (φ̂D (q)φθ∗

)−1/(2q+1)

(
b̂∗2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k
∣∣∣Γ̂∗ (k)

∣∣∣ ,
for some C < ∞. By Assumption 3.6-(ii), (ñT |φ̂D (q) − φθ∗ | = OP (1)) and using the delta method, it

suffices to show that B1,T +B2,T +B3,T
P→ 0, where

B1,T =
(
b̂∗2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k
∣∣∣Γ̂∗ (k)− Γ̃∗ (k)

∣∣∣ , (S.23)

B2,T =
(
b̂∗2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k
∣∣∣Γ̃∗ (k)− Γ∗T (k)

∣∣∣ , and

B3,T =
(
b̂∗2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T

ST∑
k=1

k |Γ∗T (k)| .

By a mean-value expansion, we have

B1,T ≤
(
b̂∗2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)ñ−1

T n
−1/2
T

ST∑
k=1

k

∣∣∣∣( ∂

∂β′
Γ̂∗ (k) |β=β

)√
nT
(
β̂ − β0

)∣∣∣∣ (S.24)

≤ C
(
b̂∗2,T

)−1/(2q+1)
T (8q−10)/10(2q+1)

(
Tbθ2,T

)2r/(2q+1)
ñ−1
T n

−1/2
T sup

k≥1

∥∥∥∥ ∂∂β Γ̂∗ (k) |β=β

∥∥∥∥√nT ∥∥∥β̂ − β0
∥∥∥

≤ C
(
b̂∗2,T

)(−1+2r)/(2q+1)
T (8q−10)/10(2q+1)+2r/(2q+1)−1/3ñ−1

T sup
k≥1

∥∥∥∥ ∂∂β Γ̂∗ (k) |β=β

∥∥∥∥√nT ∥∥∥β̂ − β0
∥∥∥ P→ 0,

since ñT /T
1/3 → ∞, r < 16q/48 + 44/48,

√
nT ||β̂ − β0|| = OP (1), and supk≥1 || (∂/∂β) Γ̂∗ (k) |β=β|| =

OP (1) using (S.5) and Assumption 3.3-(ii,iii). In addition,

E
(
B2

2,T

)
≤ E

(b̂∗2,T)−2/(2q+1)
T (8q−10)/5(2q+1)ñ−2

T

ST∑
k=1

ST∑
j=1

kj
∣∣∣Γ̃∗ (k)− Γ∗T (k)

∣∣∣ ∣∣∣Γ̃∗ (j)− Γ∗T (j)
∣∣∣
 (S.25)

≤
(
b̂∗2,T

)−2/(2q+1)−1
T (8q−10)/5(2q+1)−2/3−1S4

T sup
k≥1

Tb2,TVar
(
Γ̃∗ (k)

)
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≤
(
b̂∗2,T

)−2/(2q+1)−1
T (8q−10)/5(2q+1)−2/3−1 (Tb2,T )4r/(2q+1) sup

k≥1
Tb2,TVar

(
Γ̃∗ (k)

)
≤ T 1/5T 2/5(2q+1)T (8q−10)/5(2q+1)−2/3−1T 4r/(2q+1)T−4r/5(2q+1) sup

k≥1
Tb2,TVar

(
Γ̃∗ (k)

)
→ 0,

given that supk≥1 Tb2,TVar(Γ̃∗(k)) = O (1) using Lemma S.B.5 in Casini (2021) and r < 46/48 + 20q/48.
Assumption 3.6-(iii) and

∑∞
k=1 k

1−l <∞ for l > 2 yield

B3,T ≤ b̂−1/(2q+1)
2,T T (8q−10)/10(2q+1)ñ−1

T C3

∞∑
k=1

k1−l (S.26)

≤ T (−21−14q)/10(2q+1)C3

∞∑
k=1

k1−l → 0,

where we have used the fact that ñT /T
1/3 → ∞. Combining (S.22)-(S.26) we deduce that A1,1,T

P→ 0.
The same argument applied to A1,T where the summation now also extends over negative integers k gives

A1,T
P→ 0. Next, we show that A2,T

P→ 0. Again, we use the notation A2,1,T (resp., A2,2,T ) to denote A2,T
with the summation over positive (resp., negative) integers. Let A2,1,T = L1,T + L2,T + L3,T , where

L1,T = LA1,T + LB1,T = T 8q/10(2q+1)

bDTT
1/2c∑

k=ST+1
+

T−1∑
k=bDTT 1/2c+1

K1
(
b̂∗1,Tk

) (
Γ̂∗ (k)− Γ̃∗ (k)

)
, (S.27)

L2,T = LA2,T + LB2,T = T 8q/10(2q+1)

bDTT
1/2c∑

k=ST+1
+

T−1∑
k=bDTT 1/2c+1

K1
(
b̂∗1,Tk

) (
Γ̃∗ (k)− Γ∗T (k)

)
,

and L3,T = T 8q/10(2q+1)
T−1∑

k=ST+1
K1

(
b̂∗1,Tk

)
Γ∗T (k) .

We apply a mean-value expansion, use
√
nT (β̂ − β0) = OP (1) as well as (S.5) to obtain

∣∣∣LA1,T ∣∣∣ = T 8q/10(2q+1)−1/3
bDTT 1/2c∑
k=ST+1

C1
(
b̂∗1,Tk

)−b ∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣ (S.28)

= T 8q/10(2q+1)−1/3+4b/5(2q+1)
bDTT 1/2c∑
k=ST+1

C1k
−b
∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)

∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+4r(1−b)/5(2q+1)OP (1)OP (1) ,

which goes to zero since r > (−10 + 4q + 24b) /24 (b− 1) with b > max{1 + 1/q, 4}. We also have

∣∣∣LB1,T ∣∣∣ = T 8q/10(2q+1)−1/3
T−1∑

k=bDTT 1/2c+1

C1
(
b̂∗1,Tk

)−b ∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
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= T 8q/10(2q+1)−1/3+4b/5(2q+1)
T−1∑

k=bDTT 1/2c+1

C1k
−b
∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+(1−b)/2

∣∣∣∣( ∂

∂β′
Γ̂∗ (k)

)
|β=β
√
nT
(
β̂ − β0

)∣∣∣∣
= T 8q/10(2q+1)−1/3+4b/5(2q+1)+(1−b)/2OP (1) P→ 0,

given that 1− b < 0 and b > 1 + 1/q. Let us now consider L2,T . We have

∣∣∣LA2,T ∣∣∣ = T (8q−1)/10(2q+1)
bDTT 1/2c∑
k=ST+1

C1
(
b̂∗1,Tk

)−b ∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣ (S.29)

= C1
(
2qK2

1,qφ̂D (q)
)b/(2q+1)

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗2,T

)b/(2q+1)−1/2
bDTT 1/2c∑
k=ST+1

k−b

×
√
T b̂∗2,T

∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣ .

Note that

E

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗2,T

)b/(2q+1)−1/2
bDTT 1/2c∑
k=ST+1

k−b
√
T b̂∗2,T

∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣


2

(S.30)

≤ T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗2,T

)b/(2q+1)−1/2

bDTT
1/2c∑

k=ST+1
k−b

√
T b̂∗2,T

(
Var

(
Γ̃∗ (k)

))1/2


2

= T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗2,T

)2b/(2q+1)−1

bDTT
1/2c∑

k=ST+1
k−b


2

O (1)

= T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1
2,T D

2(1−b)
T S

2(1−b)
T O (1)→ 0,

since r > (b− 1/2) / (b− 1) for b > 4 and
√
T b̂∗2,TVar

(
Γ̃∗ (k)

)
= O (1) as above. Further,

∣∣∣LB2,T ∣∣∣ = T (8q−1)/10(2q+1)
T−1∑

k=bDTT 1/2c+1

C1
(
b̂∗1,Tk

)−b ∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣ (S.31)

= C1
(
2qK2

1,qφ̂D (q)
)b/(2q+1)

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗2,T

)b/(2q+1)−1/2 T−1∑
k=bDTT 1/2c+1

k−b

×
√
T b̂∗2,T

∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣ .
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Note that

E

T 8q/10(2q+1)+b/(2q+1)−1/2
(
b̂∗2,T

)b/(2q+1)−1/2 T−1∑
k=bDTT 1/2c+1

k−b
√
T b̂∗2,T

∣∣∣Γ̃∗ (k)− Γ∗T (k)
∣∣∣


2

(S.32)

≤ T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗2,T

)2b/(2q+1)−1

 T−1∑
k=bDTT 1/2c+1

k−b
√
T b̂∗2,T

(
Var

(
Γ̃∗ (k)

))1/2


2

= T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗2,T

)2b/(2q+1)−1

 T−1∑
k=bDTT 1/2c+1

k−b


2

O (1)

= T 8q/5(2q+1)+2b/(2q+1)−1
(
b̂∗2,T

)2b/(2q+1)−1
D

2(1−b)
T T (1−b)O (1)→ 0,

since r > (8b− 4) /((b− 1) (10q + 5)) and
√
T b̂∗2,TVar

(
Γ̃∗ (k)

)
= O (1) as above. Combining (S.29)-(S.30)

yields L2,T
P→ 0. Let us turn to L3,T . By Assumption 3.6-(iii) and |K1 (·) | ≤ 1, we have,

|L3,T | ≤ T 8q/10(2q+1)
T−1∑
k=ST

C3k
−l ≤ T 8q/10(2q+1)C3S

1−l
T (S.33)

≤ C3T
8q/10(2q+1)T−4r(l−1)/5(2q+1) → 0,

since r > q/ (l − 1). In view of (S.27)-(S.33) we deduce that A2,1,T
P→ 0. Applying the same argu-

ment to A2,2,T , we have A2,T
P→ 0. Using similar arguments, one has A3,T

P→ 0. It remains to show

that T 8q/10(2q+1)(Ĵ∗T (bθ1,T , b̂
∗
2,T ) − Ĵ∗T (bθ1,T , bθ2,T )) P→ 0. The proof of the latter result follows from

the proof of the corresponding result in Theorem 5.1-(ii) in Casini (2021) with r < 2/3 + q/3 and
r > (b− 2/3− q/3) / (b− 1) . �

Proof of Theorem 3.1. We begin with part (i). Note that

Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− J∗T = Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T ) + Ĵ∗T (bθ1,T , bθ2,T )− J∗T . (S.34)

By Lemma S.A.1-S.A.2 the right-hand side is oP (1) . It follows that the first term on the right-hand side
of (S.2) is also oP (1) because the presence of D̂s is irrelevant for the result to hold. We have,

J∗T,D = 1
T

T∑
s=pA+1

T∑
t=pA+1

DsEV ∗s (V ∗t Dt)′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

Ip − pA∑
j=1

AD,s,j

−1

E

Vs − pA∑
j=1

AD,s,jVs−j


×

V ∗t
Ip − pA∑

j=1
AD,t,j

−1

′
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= 1
T

T∑
s=pA+1

T∑
t=pA+1

Ip − pA∑
j=1

AD,s,j

−1

× E

Vs − pA∑
j=1

AD,s,jVs +
pA∑
j=1

AD,s,jVs −
pA∑
j=1

AD,s,jVs−j


V ∗t

Ip − pA∑
j=1

AD,t,j

−1

′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

Ip − pA∑
j=1

AD,s,j

−1

E

Vs − pA∑
j=1

AD,s,jVs +
pA∑
j=1

AD,s,j (Vs − Vs−j)


×

V ∗t
Ip − pA∑

j=1
AD,t,j

−1

′

= 1
T

T∑
s=pA+1

T∑
t=pA+1

E


Vs +

Ip − pA∑
j=1

AD,s,j

−1
pA∑
j=1

AD,s,j (Vs − Vs−j)


 (S.35)

×

V ∗t
Ip − pA∑

j=1
AD,t,j

−1

′

.

Now note that the sum involving Vs − Vs−j has a telescopic form to a sum. Using the smoothness of
AD,s,j , we have that the sum from any s to T isIp − pA∑

j=1
AD,s,j

−1
pA∑
j=1

AD,s,j (Vs − Vs−j) (S.36)

+

Ip − pA∑
j=1

AD,s+1,j

−1
pA∑
j=1

AD,s+1,j (Vs+1 − Vs+1−j)

· · ·

+

Ip − pA∑
j=1

AD,T,j

−1
pA∑
j=1

AD,T,j (VT − VT−j) .

For s 6= T 0
r (r = 1, . . . , m0) local stationarity implies AD,s+1,j = AD,s,j +O (1/T ). There are only a finite

number of breaks T 0
r (r = 1, . . . , m0) so that (S.36) is equal toIp − pA∑

j=1
AD,pA+1,j

−1

AD,pA+1,pAV1 +

Ip − pA∑
j=1

AD,T,j

AD,T,pAVT
+

m0∑
r=1

Ip − pA∑
j=1

AD,T 0
r ,j

−1
pA∑
j=1

(
AD,T 0

r ,j
−AD,T 0

r +1,j
)
VT 0

r

,CA,T .
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It follows that

1
T

T∑
t=1

E (CA,T )

V ∗t
Ip − pA∑

j=1
AD,t,j

−1

′

→ 0.

Altogether, this implies J∗T,D
P→ JT . Using Assumption 3.7 and simple manipulations, the second term

on the right-hand side of (S.2) is oP (1). Therefore,

Ĵpw,T − JT =
(
Ĵpw,T − J∗T,D̂

)
+
(
J∗
T,D̂
− J∗T,D

)
+
(
J∗T,D − JT

)
= oP (1) , (S.37)

which concludes the proof of part (i).
Next, we move to part (ii). Given the decomposition (S.2), we have to show√

Tbθ1,T bθ2,T

(
Ĵpw,T − J∗T,D̂

)
= OP (1) (S.38)√

Tbθ1,T bθ2,T

(
J∗
T,D̂
− J∗T,D

)
= oP (1) (S.39)√

Tbθ1,T bθ2,T

(
J∗T,D − JT

)
= oP (1) . (S.40)

Equation (S.38) follows from √
Tbθ1,T bθ2,T

(
Ĵ∗T (bθ1,T , bθ2,T )− J∗T

)
= OP (1) (S.41)√

Tbθ1,T bθ2,T

(
Ĵ∗T

(
b̂∗1,T , b̂

∗
2,T

)
− Ĵ∗T (bθ1,T , bθ2,T )

)
= oP (1) , (S.42)

since the presence of D̂s in V̂ ∗D,s is irrelevant. Thus, Lemma S.A.3-S.A.4 yield (S.38). Given that√
Tbθ1,T bθ2,T /nT → 0, Assumption 3.7 and simple algebra yield (S.39). From the proof of part (i), it

is easy to see that the multiplication by the factor
√
Tbθ1,T bθ2,T in (S.40) does not change the fact that

this term is oP (1). Therefore, we conclude that T 8q/10(2q+1)(Ĵpw,T − JT ) = OP (1).
We now move to part (iii). The estimator ĴT,pw is actually a double kernel HAC estimator constructed

using observations {V̂D,s}, where the latter is SLS. Thus, using Theorem 3.2 and 5.1 in Casini (2021) and
Assumption 3.7, we deduce that

lim
T→∞

MSE
(
Tbθ1,T bθ2,T , Ĵpw,T , JT , WT

)
= lim

T→∞
MSE

(
Tbθ1,T bθ2,T , J

∗
T,D, JT , WT

)
. (S.43)

This implies that it is sufficient to determine the asymptotic MSE of J∗T,D. Note that J∗T,D is simply a
double kernel HAC estimator constructed using observations {V ∗D,t}. It follows that {V ∗D,t} is SLS and
thus it satisfies the conditions of Theorem 3.2 and 5.1 in Casini (2021). The same argument in Casini
(2021) now with reference to Theorem 3.1-(i,ii) yields

lim
T→∞

MSE
(
Tbθ1,T bθ2,T , J

∗
T,D, JT , WT

)
= 4π2

[
γθK

2
1,qvec

(ˆ 1

0
f
∗(q)
D (u, 0) du

)′
Wvec

(ˆ 1

0
f
∗(q)
D (u, 0) du

)]

+
ˆ
K2

1 (y) dy
ˆ
K2

2 (x) dx trW
(
Ip2
β
− Cpp

)(ˆ 1

0
f∗D (u, 0) du

)
⊗
(ˆ 1

0
f∗D (v, 0) dv

)
.
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The latter relation and (S.43) conclude the proof. �

S.A.2 Proofs of the Results in Section 4

In the proofs below involving ĉT (u, k) , c̃T (u, k) and c (u, k), we assume k ≥ 0 unless otherwise stated.
The proofs for the case k < 0 are similar and omitted.

S.A.2.1 Proof of Theorem 4.1

We first present upper and lower bounds on the asymptotic variance of J̃T . Let VarP (·) denote the
variance of · under P.

Lemma S.A.5. Suppose that Assumption 4.1 holds, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT /T → 0
and 1/Tb1,T b2,T → 0. We have for all a ∈ Rpβ :

(i) for any K1 (·) ∈K1,

lim
T→∞

sup
P∈PU

Tb1,T b2,TVarP

(
a′J̃Ta

)
= lim

T→∞
Tb1,T b2,TVarPU

(
a′J̃Ta

)

= 8π2
ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPU ,a (u, 0) du

)2

;

(ii) for any K1 (·) ∈K1,+,

lim
T→∞

inf
P∈PL

Tb1,T b2,TVarP

(
a′J̃Ta

)
= lim

T→∞
Tb1,T b2,TVarPL

(
a′J̃Ta

)
= 8π2

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPL,a (u, 0) du

)2

.

Proof of Lemma S.A.5. Let Zt = a′Vt and cP,T (rnT /T, k) = EP c̃T (rnT /T, k). For any k ≥ 0 and any
r = 0, . . . , bT/nT c,

a′
(
c̃T (rnT /T, k)− cP,T (rnT /T, k)

)
a

=

(Tb2,T )−1
T∑

s=k+1
K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
(ZsZs−k − EP (ZsZs−k))

 .
For any k, j ≥ 0 and any r, b = 0, . . . , bT/nT c,

sup
P∈PU

∣∣EP
(
a′
(
c̃T (rnT /T, k)− cP,T (rnT /T, k)

)
aa′

(
c̃T (bnT /T, j)− cP,T (bnT /T, j)

)
a
)∣∣

=
∣∣∣∣∣(Tb2,T )−2

T∑
s=k+1

T∑
l=j+1

K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
K∗2

(
((b+ 1)nT − (l − j/2)) /T

b2,T

)

× (EP (ZsZs−kZlZ l−j)− EP (ZsZs−k)EP (ZlZ l−j))
∣∣∣∣∣.

By definition of the fourth-order cumulant and by definition of P U ,

sup
P∈PU

∣∣EP
(
a′
(
c̃T (rnT /T, k)− cP,T (rnT /T, k)

)
aa′

(
c̃T (bnT /T, j)− cP,T (bnT /T, j)

)
a
)∣∣
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=
∣∣∣∣∣(Tb2,T )−2

T∑
s=k+1

T∑
l=j+1

K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
K∗2

(
((b+ 1)nT − (l − j/2)) /T

b2,T

)

×
(
EP (ZsZs−k)EP (ZlZ l−j) + EP (ZsZ l)EP (Zs−kZ l−j) + EP (ZsZ l−j)E (Zs−kZ l)

+ κP,aV,s (−k, l − s, l − j − s)− EP (ZsZs−k)E (ZlZ l−j)
∣∣∣∣∣

≤ (Tb2,T )−2
T∑

s=k+1

T∑
l=j+1

K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
K∗2

(
((b+ 1)nT − (l − j/2)) /T

b2,T

)

×
(
a′ΓPU ,s/T (s− l) aa′ΓPU ,s−k (s− k − l + j) a+ a′ΓPU ,s/T (s− l + j) aa′ΓPU ,s−k (s− k − l) a

+ κ∗s (−k, l − s, l − j − s)
)

≤ EPU

(
a′
(
c̃T (rnT /T, k)− cPU ,T (rnT /T, k)

)
aa′

(
c̃T (bnT /T, j)− cPU ,T (bnT /T, j)

)
a
)

(S.44)

+ 2
(

1
Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

K∗2

(
((r + 1)nT − (s− k/2)) /T

b2,T

)
K∗2

(
((b+ 1)nT − (l − j/2)) /T

b2,T

)
× κ∗s (−k, l − s, l − j − s) ,

where the last inequality holds by reversing the argument of the equality and the first inequality.
By a similar argument,

inf
P∈PL

∣∣EP
(
a′
(
c̃T (rnT /T, k)− cP,T (rnT /T, k)

)
aa′

(
c̃T (bnT /T, j)− cP,T (bnT /T, j)

)
a
)∣∣

≥ EPL

(
a′
(
c̃T (rnT /T, k)− cPL,T (rnT /T, k)

)
aa′

(
c̃T (bnT /T, j)− cPL,T (bnT /T, j)

)
a
)

(S.45)

+ 2
(

1
Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

κ∗s (−k, l − s, l − j − s) .

Let J̃T,K be the same as J̃T but with |K1 (·)| and |K2 (·)| in place of K1 (·) and K2 (·), respectively. Note
that K1 (·) ∈K1 (K2 (·) ∈K2) implies |K1 (·)| ∈K1 (|K2 (·)| ∈K2). We have

lim
T→∞

Tb1,T b2,TVarPU

(
a′J̃Ta

)
≤ lim

T→∞
sup

P∈PU

Tb1,T b2,TVarP

(
a′J̃Ta

)
= lim

T→∞
sup

P∈PU

Tb1,T b2,T

T−1∑
k=−T+1

T−1∑
j=−T+1

K1 (b1,Tk)K1 (b1,T j)

×
(
nT
T

)2 T/nT∑
r=0

T/nT∑
b=0

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

K∗2

(
(rnT + 1)− (s+ k/2)

Tb2,T

)
K∗2

(
(bnT + 1)− (l + j/2)

Tb2,T

)

× EP

(
a′
(
Γs/T (k)− EP

(
Γs/T (k)

))
aa′

(
Γl/T (k)− EP

(
Γl/T (k)

))
a
)

≤ lim
T→∞

Tb1,T b2,T

T−1∑
k=−T+1

T−1∑
j=−T+1

|K1 (b1,Tk)K1 (b1,T j)|
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×
(
nT
T

)2 T/nT∑
r=0

T/nT∑
b=0

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

∣∣∣∣∣K∗2
(

(rnT + 1)− (s+ k/2)
Tb2,T

)
K∗2

(
(bnT + 1)− (l + j/2)

Tb2,T

)∣∣∣∣∣
× EPU

(
a′
(
Γs/T (k)− EPU

(
Γs/T (k)

))
aa′

(
Γs/T (k)− EPU

(
Γs/T (k)

))
a
)

+ 2 lim
T→∞

Tb1,T b2,T

T−1∑
k=−T+1

T−1∑
j=−T+1

|K1 (b1,Tk)K1 (b1,T j)|
(
nT
T

)2 T/nT∑
r=0

T/nT∑
b=0

(
1

Tb2,T

)2

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

∣∣∣∣∣K∗2
(

((r + 1)nT − (s− k/2)) /T
b2,T

)
K∗2

(
((b+ 1)nT − (l − j/2)) /T

b2,T

)∣∣∣∣∣
× κ∗s (−k, l − s, l − j − s)

= lim
T→∞

Tb1,T b2,TVarPU

(
a′J̃T,Ka

)
, (S.46)

where the last inequality uses (S.44). For K1 (·) ∈ K1,+, we can rely on an argument analogous to that
of (S.46) using (S.45) in place of (S.44) to yield,

lim
T→∞

Tb1,T b2,TVarPL

(
a′J̃Ta

)
≥ lim

T→∞
inf

P∈PL

Tb1,T b2,TVarP

(
a′J̃Ta

)
≥ lim

T→∞
Tb1,T b2,TVarPL

(
a′J̃T,Ka

)
. (S.47)

By Theorem 3.1 in Casini (2021),

lim
T→∞

Tb1,T b2,TVarPw

(
a′J̃Ta

)
= 8π2

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPw,a (u, 0) du

)2

, and (S.48)

lim
T→∞

Tb1,T b2,TVarPw

(
a′J̃K,Ta

)
= 8π2

ˆ
|K1 (y)|2 dy

ˆ 1

0
|K2 (x)|2 dx

(ˆ 1

0
fPw,a (u, 0) du

)2

, (S.49)

for w = L, U . Equations (S.46), (S.48) and (S.49) combine to establish part (i) of the lemma:

8π2
ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPU ,a (u, 0) du

)2

= lim
T→∞

Tb1,T b2,TVarPU

(
a′J̃Ta

)
≤ lim

T→∞
sup

P∈PU

Tb1,T b2,TVarP

(
a′J̃Ta

)
≤ lim

T→∞
Tb1,T b2,TVarPU

(
a′J̃T,Ka

)
= 8π2

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
(ˆ 1

0
fPU ,a (u, 0) du

)2

.

By a similar reasoning, equations (S.47) and (S.48) yield part (ii). �

Upper and lower bounds on the asymptotic bias of J̃T are given in the following lemma. Let JPw,T

be equal to JP,T but with the expectation EP replaced by EPw , w = U, L.

Lemma S.A.6. Let Assumption 4.1 hold, K1 (·) ∈K1, K2 (·) ∈K2, b1,T , b2,T → 0, nT →∞, nT /T → 0,
1/Tb1,T b2,T → 0, 1/Tbq1,T b2,T → 0, nT /Tbq1,T → 0 and b22,T /b

q
1,T → 0 for some q ∈ [0, ∞) for which
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K1,q, |
´ 1

0 f
(q)
Pw,a

(u, 0) du| ∈ [0, ∞), w = U, L. We have for all a ∈ Rpβ :
(i) lim

T→∞
sup

P∈PU

b−q1,T

∣∣∣EPa
′J̃Ta− a′JP,Ta

∣∣∣ = lim
T→∞

b−q1,T

∣∣∣EPU
a′J̃Ta− a′JPU ,Ta

∣∣∣ = 2πK1,qf
(q)
PU ,a

and

(ii) lim
T→∞

inf
P∈PL

b−q1,T

∣∣∣EPa
′J̃Ta− a′JP,Ta

∣∣∣ = lim
T→∞

b−q1,T

∣∣∣EPL
a′J̃Ta− a′JPL,Ta

∣∣∣ = 2πK1,qf
(q)
PL,a

.

Proof of Lemma S.A.6. We begin with part (i). We have,

lim
T→∞

sup
P∈PU

b−q1,T

∣∣∣EPa
′J̃Ta− a′JP,Ta

∣∣∣
= lim

T→∞
sup

P∈PU

b−q1,T

∣∣∣∣∣∣
T−1∑

k=−T+1
K1 (b1,Tk) a′EP

(
Γ̃ (k)

)
a−

T−1∑
k=−T+1

a′ΓP,T (k) a

∣∣∣∣∣∣
= lim

T→∞
sup

P∈PU

b−q1,T

∣∣∣∣∣∣
T−1∑

k=−T+1
K1 (b1,Tk) a′EP

(
Γ̃ (k)

)
a−

T−1∑
k=−T+1

K1 (b1,Tk) a′ΓP,T (k) a

+
T−1∑

k=−T+1
K1 (b1,Tk) a′ΓP,T (k) a−

T−1∑
k=−T+1

a′ΓP,T (k) a

∣∣∣∣∣∣
= lim

T→∞
sup

P∈PU

b−q1,T
∣∣G1,P,T +G2,P,T

∣∣ .
Let us first consider G1,P,T . Note that for k ≥ 0,

a′
(
EP

(
Γ̃ (k)

)
− ΓP,T (k)

)
a

=

nT
T

bT/nT c∑
r=0

T∑
s=k+1

T−1
(
b−1
2,TK2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)
− 1

)
a′EP

(
VsV

′
s−k
)
a

 .
Thus,

sup
P∈PU

∣∣∣a′ (EP

(
Γ̃ (k)

)
− ΓP,T (k)

)
a
∣∣∣

≤ |nT
T

bT/nT c∑
r=0

T∑
s=k+1

T−1
(
b−1
2,TK2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)
− 1

)
a′EPU

(
VsV

′
s−k
)
a|.

By Lemma S.B.1 in Casini (2021), EPU
(VsV ′s−k) = c (s/T, k) + O

(
T−1) uniformly in s and k. By the

proof of Lemma S.B.6 in Casini (2021),

sup
P∈PU

∣∣∣a′ (EP

(
Γ̃ (k)

)
− ΓP,T (k)

)
a
∣∣∣

≤
∣∣∣∣nTT

bT/nT c∑
r=0

T∑
s=k+1

T−1
(

(b2,T )−1K2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)
− 1

)
a′EPU

(
VsV

′
s−k
)
a

∣∣∣∣
= O

(
nT
T

)
+
∣∣∣∣∣12b22,T

ˆ 1

0
x2K2 (x) dx

ˆ 1

0
a′
(
∂2

∂2u
c (u, k)

)
adu

∣∣∣∣∣+ o
(
b22,T

)
+O

(
1

Tb2,T

)
.

It then follows that lim
T→∞

sup
P∈PU

b−q1,T |G1,P,T | = 0 given the conditions nT /Tb
q
1,T → 0 and b22,T /b

q
1,T → 0.

S-17



alessandro casini and pierre perron

Next, given that 1−K1 (b1,Tk) ≥ 0,

lim
T→∞

sup
P∈PU

b−q1,T
∣∣G2,P,T

∣∣
= lim

T→∞
sup

P∈PU

b−q1,T

∣∣∣∣∣∣
T−1∑

k=−T+1
(K1 (b1,Tk)− 1) a′ΓP,T (k) a

∣∣∣∣∣∣
= lim

T→∞
b−q1,T

T−1∑
k=−T+1

(1−K1 (b1,Tk)) a′EPU

(
Γ̃ (k)

)
a.

Write the right-hand side above as,

lim
T→∞

b−q1,T

T−1∑
k=−T+1

(1−K1 (b1,Tk)) a′
(
EPU

(
Γ̃ (k)

)
−
ˆ 1

0
cPU

(u, k) du
)
a

+ lim
T→∞

b−q1,T

T−1∑
k=−T+1

(1−K1 (b1,Tk)) a′
(ˆ 1

0
cPU

(u, k) du
)
a. (S.50)

By Lemma S.B.1 in Casini (2021), the first term above is less than,

lim
T→∞

b−q1,T

T−1∑
k=−T+1

(1−K1 (b1,Tk))O
(
T−1

)
= 0. (S.51)

Thus, it remains to consider the second term of (S.50). Let w (x) = (1−K1 (x)) / |x|q for x 6= 0 and
w (x) = K1,q for x = 0. The following properties hold: w (x) → K1,q as x → 0; w (·) is non-negative and
bounded. The latter property implies that there exists some constant C < ∞ such that w (x) ≤ C for

all x ∈ R. Recall that |
´ 1

0 f
(q)
Pw,a

(u, 0) du| ∈ [0, ∞), w = U, L. Hence, given any ε > 0, we can choose a

T̊ <∞ such that
´ 1

0
∑∞
k=T̊+1 |k|

q (a′ΓPU ,u (k) a)du < ε/ (4C). Then, using (S.51), we have

lim
T→∞

sup
P∈PU

b−q1,T

∣∣∣G2,T − 2πK1,qf
(q)
U,a

∣∣∣
≤ lim sup

T→∞

T̊∑
k=−T̊

|w (b1,Tk)−K1,q| |k|q a′
(ˆ 1

0
c (u, k) du

)
a

+ 2 lim sup
T→∞

T∑
k=−T̊+1

|w (b1,Tk)−K1,q| |k|q a′
(ˆ 1

0
c (u, k) du

)
a

≤ ε.

This concludes the proof of part (i). The proof of part (ii) is identical to that of part (i) except that

sup
P∈PU

, ΓPU ,u and f
(q)
PU ,a

are replaced by inf
P∈PL

, ΓPL,u and f
(q)
PL,a

. �

Proof of Theorem 4.1. Parts (i) and (ii) of the theorem follow from Lemma S.A.5-(i) and Lemma S.A.6-(i),
and Lemma S.A.5-(ii) and Lemma S.A.6-(ii), respectively. �
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S.A.2.2 Proof of Theorem 4.2

Lemma S.A.5-S.A.6 [with q = 0 in part (ii)] implies J̃T − JT = oP (1). Noting that ĴT − J̃T = oP (1) if
and only if a′ĴTa−a′J̃Ta = oP (1) for arbitrary a ∈ Rp we shall provide the proof only for the scalar case.
We first show that

√
Tb1,T (ĴT − J̃T ) = OP (1) under Assumption 3.3. Let J̃T (β) denote the estimator

that uses {Vt (β)}. A mean-value expansion of J̃T (β̂) (= ĴT ) about β0 yields,

√
Tb1,T

(
ĴT − J̃T

)
= b1,T

T−1∑
k=−T+1

K1 (b1,Tk) ∂

∂β′
Γ̂ (k) |β=β̄

√
T
(
β̂ − β0

)
, (S.52)

for some β̄ on the line segment joining β̂ and β0. We have for k ≥ 0 (the case k < 0 is similar and omitted)
(S.5)-(S.6). It follows that (S.52) is

b1,T

T−1∑
k=−T+1

K1 (b1,Tk) ∂

∂β′
Γ̂ (k) |β=β̄

√
T
(
β̂ − β0

)

≤ b1,T
T−1∑

k=−T+1
K1 (b1,Tk) nT

T

T/nT∑
r=0

OP (1)OP (1)

= OP (1) ,

where we have used b1,T
∑T−1
k=−T+1 |K1(b1,Tk)| →

´
|K1 (x) |dx < ∞. Given

√
Tb1,T → ∞, this concludes

the proof of Theorem 4.2-(i).
Next, we show that

√
Tb1,T (ĴT − J̃T ) = oP (1) under the assumptions of Theorem 4.2-(ii). A

second-order Taylor expansion yields√
Tb1,T

(
ĴT − J̃T

)
=
[√

b1,T
∂

∂β′
J̃T (β0)

]√
T
(
β̂ − β0

)
+ 1

2
√
T
(
β̂ − β0

)′ [√
b1,T

∂2

∂β∂β′
J̃T
(
β
)
/
√
T

]
√
T
(
β̂ − β0

)
, G′T

√
T
(
β̂ − β0

)
+ 1

2
√
T
(
β̂ − β0

)′
HT

√
T
(
β̂ − β0

)
.

We can use the same argument as in (S.5) but now using Assumption 4.2-(ii), sot that∥∥∥∥ ∂2

∂β∂β′
ĉ (rnT /T, k)

∥∥∥∥∣∣∣∣
β=β̄

=

∥∥∥∥∥∥(Tb2,T )−1
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)(
∂2

∂β∂β′
Vs (β)V s−k (β)

)∥∥∥∥∥∥
∣∣∣∣
β=β̄

= OP (1) ,

and thus,

‖HT ‖ ≤
(
b1,T
T

)1/2 T−1∑
k=−T+1

|K1 (b1,Tk)| sup
β∈Θ

∥∥∥∥∥ ∂2

∂β∂β′
Γ̂ (k)

∥∥∥∥∥
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≤
(
b1,T
T

)1/2 T−1∑
k=−T+1

|K1 (b1,Tk)|OP (1)

≤
(

1
Tb1,T

)1/2

b1,T

T−1∑
k=−T+1

|K1 (b1,Tk)|OP (1) = oP (1) ,

since Tb1,T → ∞. Next, we show that GT = oP (1). We follow the argument in the last paragraph

of p. 852 of Andrews (1991). We apply Theorem 4.2-(i,ii) to J̃T where the latter is constructed using
(V ′t , ∂Vt/∂β′ − EP (∂Vt/∂β′))′ rather than just with Vt. The first row and column of the off-diagonal
elements of this J̃T are now

A1 ,
T−1∑

k=−T+1
K1 (b1,Tk) nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)
Vs

(
∂

∂β
V s−k − EP

(
∂

∂β
V s

))

A2 ,
T−1∑

k=−T+1
K1 (b1,Tk) nT

T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)(
∂

∂β
V s − EP

(
∂

∂β
V s

))
Vs−k,

which are both OP (1) by Theorem 4.1. Note that

GT ≤
√
b1,T (A1 +A2) +

√
b1,T

T−1∑
k=−T+1

|K1 (b1,Tk)| nT
T

T/nT∑
r=0

1
Tb2,T

×
T∑

s=k+1
K∗2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

) ∣∣∣∣(Vs + Vs−k)EP

(
∂

∂β
V s

)∣∣∣∣
,
√
b1,T (A1 +A2) +A3 sup

1≤s≤T

∣∣∣∣EP

(
∂

∂β
V s

)∣∣∣∣ .
It remains to show that A3 is oP (1) . We have,

EP

(
A2

3

)
≤ b1,T

T−1∑
k=−T+1

T−1∑
j=−T+1

|K1 (b1,Tk)K1 (b1,T j)| 4
(
nT
T

)2 T/nT∑
r=0

T/nT∑
b=0

× 1
Tb2,T

1
Tb2,T

T∑
s=1

T∑
l=1

K∗2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)

×K∗2

(
((b+ 1)nT − (l + j/2)) /T

b2,T

)
|EP (VsVl)| .

S-20



long-run variance estimation under nonstationarity

Since P ∈PU , |EP(VsVl)| ≤ |ΓPU ,s/T (l − s)|. Given
∑∞
h=−∞ supu∈[0, 1] |cPU

(u, h) | <∞, we have

EP

(
A2

3

)
≤ 1
Tb1,T b2,T

b1,T T−1∑
k=−T+1

|K1 (b1,Tk)|

2 ˆ 1

0
K2

2 (x) dx
ˆ 1

0

∞∑
h=−∞

|cPU
(u, h)| du = o (1) ,

(S.53)

from which it follows that GT = oP (1) and so
√
Tb1,T (ĴT − J̃T ) = oP (1). The latter concludes the proof

of part (ii) because
√
Tb1,T b2,T (J̃T − JT ) = OP (1) by Theorem 4.1.

Let us consider part (iii). Let GT = a′ĴTa− a′J̃Ta. We have,

lim
T→∞

sup
P∈PU

Tb1,T b2,T
∣∣∣MSEP

(
a′ĴTa

)
−MSEP

(
a′J̃Ta

)∣∣∣ (S.54)

= lim
T→∞

sup
P∈PU

Tb1,T b2,T
∣∣∣2EP

(
a′J̃Ta− a′JP,Ta

)
GT + EP

(
G

2
T

)∣∣∣
≤ 2 lim

T→∞

(
sup

P∈PU

Tb1,T b2,TMSEP

(
a′J̃Ta

))1/2(
sup

P∈PU

Tb1,T b2,TEP

(
G

2
T

))1/2

+ lim
T→∞

sup
P∈PU

Tb1,T b2,TEP

(
G

2
T

)
.

The right-hand side above equals zero if (a) limT→∞ supP∈PU
Tb1,T b2,TEP(G2

T ) = 0 and (b) lim supT→∞
supP∈PU

Tb1,T b2,TMSEP(a′J̃Ta) <∞. Result (b) follows by Lemma S.A.5-(i). A second-order expansion
yields,

GT =
[
∂

∂β
a′J̃T (β0) a

] (
β̂ − β0

)
+ 1

2
(
β̂ − β0

)′ [ ∂2

∂β∂β′
a′J̃T

(
β
)
a

] (
β̂ − β0

)
= G1,T +G2,T , (S.55)

where β lies on the line segment joining β̂ and β0. Note that EP(G2
T ) = EP(G2

1,T ) + EP(G2
2,T ) +

2EP(G1,TG2,T ). Thus, using Assumption 4.3,

sup
P∈PU

Tb1,T b2,TEP

(
G

2
1,T

)
(S.56)

≤ Tb1,T b2,T p2 max
r≤p

sup
P∈PU

EP

(
∂

∂β(r)a
′J̃T (β0) a

(
β̂(r) − β̂(r)

0

))2

≤ 1
Tb1,T

p2 max
r≤p

sup
P∈PU

EP

(
H

(r)
1,T
√
T
(
β̂(r) − β̂(r)

0

))2

→ 0,

and

sup
P∈PU

Tb1,T b2,TEP

(
G

2
2,T

)
(S.57)

≤ 1
4Tb1,T b2,T p

2 max
r≤p

sup
P∈PU

EP

(∣∣∣∣β̂(r) − β(r)
0

∣∣∣∣ ∂2

∂β(r)∂β(r)′a
′J̃T

(
β
)
a

∣∣∣∣β̂(r) − β(r)
0

∣∣∣∣
)2

≤ b2,T
Tb1,T

p2 max
r≤p

sup
P∈PU

EP

(√
T

∣∣∣∣β̂(r) − β(r)
0

∣∣∣∣H(r)
2,T
√
T

∣∣∣∣β̂(r) − β(r)
0

∣∣∣∣)2
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→ 0.

Equations (S.55) to (S.57) and the Cauchy-Schwartz inequality yield result (a) and thus the desired result
of the theorem. �

S.A.2.3 Proof of Proposition 4.1

For K2 (·) ∈K2, using the definition of PU and the arguments in (S.44),

VarPU

(
a′c̃T (u0, k) a

)
≤ sup

P∈PU

VarP
(
a′c̃T (u0, k) a

)

= sup
P∈PU

EP


(Tb2,T )−1

T∑
s=k+1

K∗2

(
u0 − (s+ k/2) /T

b2,T

)
a′
(
ṼsṼ

′
s−k − EP

(
ṼsṼ

′
s−k

))
a

2


= sup
P∈PU

EP (Tb2,T )−2
T∑

s=k+1

T∑
l=j+1

K∗2

(
u0 − (s+ k/2) /T

b2,T

)
K∗2

(
u0 − (l + j/2) /T

b2,T

)

× a′
(
ṼsṼ

′
s−k − EP

(
ṼsṼ

′
s−k

))
aa′

(
ṼlṼ

′
l−j − EP

(
ṼlṼ

′
l−j

))
a

≤ (Tb2,T )−2
T∑

s=k+1

T∑
l=j+1

∣∣∣∣∣K∗2
(
u0 − (s− k/2) /T

b2,T

)
K∗2

(
u0 − (l − j/2) /T

b2,T

)∣∣∣∣∣
× (a′ΓU,s/T (s− l) aa′ΓU,s−k (s− k − l + j) a
+ a′ΓU,s/T (s− l + j) aa′ΓU,s−k (s− k − l) a+ κPU ,aV,s (j, l − s, l − j − s))
≤ EPU

(
a′
(
cT (u0, k)− cPU ,T (u0, k)

)
aa′ (cT (u0, j)− cPUT (u0, j)) a

)
+ 2

(
1

Tb2,T

)2 T∑
s=k+1

T∑
l=j+1

∣∣∣∣∣K∗2
(

((r + 1)nT − (s− k/2)) /T
b2,T

)
K∗2

(
((b+ 1)nT − (l − j/2)) /T

b2,T

)∣∣∣∣∣
× κPU ,aV,s (j, l − s, l − j − s)

= VarPU

(
a′cT (u0, k) a

)
, (S.58)

where cT (u0, k) (resp. cPU ,T (u0, k)) is equal to c̃T (u0, k) (resp. cPU ,T (u0, k)) but with |K2 (·) | in place
of K2 (·). Since K2 (·) ≥ 0 by definition, Proposition 3.1 in Casini (2021) implies

VarPU

(
a′c̃T (u0, k) a

)
= 1
Tb2,T

ˆ 1

0
K2

2 (x) dx
∞∑

l=−∞
a′
(
cPU

(u0, l) [cPU
(u0, l) + cPU

(u0, l + 2k)]′
)
a

+ 1
Tb2,T

ˆ 1

0
K2

2 (x) dx
∞∑

h1=−∞

∞∑
h2=−∞

κPU ,aV,Tu0 (h1, 0, h2)

+ o
(
b42,T

)
+O (1/ (b2,TT ))

= VarPU

(
a′cT (u0, k) a

)
. (S.59)
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Next, we discuss the bias. We have,

sup
P∈PU,2

∣∣EP
(
a′c̃T (u0, k) a− a′cP (u0, k) a

)∣∣
= lim

T→∞
sup

P∈PU,2

∣∣∣∣∣∣(Tb2,T )−1
T∑

s=k+1
K2

(
((r + 1)nT − (s+ k/2)) /T

b2,T

)
a′EP

(
VsV

′
s−k
)
a− a′cP (u0, k) a

∣∣∣∣∣∣
≤ 1

2b
2
2,T

ˆ 1

0
x2K2 (x) dx

ˆ 1

0

∣∣∣∣∣a′ ∂2

∂2u
cPU

(u0, k) a
∣∣∣∣∣ du+ o

(
b22,T

)
+O

(
1

Tb2,T

)
, (S.60)

where the inequality above follows from (4.1). Combining (S.59)-(S.60), we have that supP∈PU,2 MSE(a′c̃T
(u0, k)a) is equal to the right-hand side of (4.2). The same result holds for ĉT (u0, k) since the proof of
Theorem 4.2 and P U,2 ⊆ P U imply that supP∈PU,2 MSEP(a′ĉT (u0, k)a) is asymptotically equivalent to
supP∈PU,2 MSEP(a′c̃T (u0, k)a). This gives (4.2). The form for the optimal b2,T (·) and K2 (·) follow from
the same argument as in Proposition 4.1 in Casini (2021). �

S.A.2.4 Proof of Theorem 4.3

If Tb2q+1
1,T b2,T → γ ∈ (0, ∞) for some q ∈ [0, ∞) for which K1,q, |

´ 1
0 f

(q)
U,a (u, 0) du| ∈ [0, ∞), then by

Lemma S.A.5-(i) and Lemma S.A.6-(i),

lim
T→∞

Tb1,T b2,T sup
P∈PU

MSEP

(
a′ĴT (b1,T,K1) a

)

= 4π2

γK2
1,q

(ˆ 1

0
f

(q)
U,a (u, 0) du

)2

+
ˆ
K2

1 (y) dy
ˆ 1

0
(K2,0 (x))2 dx

(ˆ 1

0
fU,a (u, 0) du

)2
 .

Assume q = 2 so that Tb51,T b2,T → γ. Then, Tb51,T,K1
b2,T → γ/(

´
K2

1 (y) dy)5 and

Tb1,T b2,T = Tb1,T,K1b2,T

ˆ
K2

1 (y) dy.

Therefore, given K1,2 <∞,

lim inf
T→∞

Tb1,T b2,T

(
sup

P∈PU

MSE
(
a′ĴT (b1,T,K1) a

)
− sup

P∈PU

MSE
(
a′ĴQS

T (b1,T ) a
))

= 4γπ2
(ˆ 1

0
f

(q)
U,a (u, 0) du

)2 ˆ 1

0
(K2 (x))2 dx

[
K2

1,2

(ˆ
K2

1 (y) dy
)4
−
(
KQS

1,2

)2
]
.

The optimality of KQS
1 then follows from the same argument as in the proof of Theorem 4.1 in Casini

(2021). �

S.A.2.5 Proof of Theorem 4.4

Suppose γ ∈ (0, ∞). Under the conditions of the theorem,

(Tb2,T )2q/(2q+1) = (γ−1/(2q+1) + o (1))Tb1,T b2,T .
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By Theorem 4.1-(i),

lim inf
T→∞

(
Tb2,T

)2q/(2q+1)
sup

P∈PU (φ(q))
EPL

(
J̃T (b1,T ) , JP,T

)
(S.61)

= lim inf
T→∞

(
γ−1/(2q+1) + o (1)

)
Tb1,T b2,T sup

P∈PU (φ)

p∑
r=1

wrMSEP

(
a(r)′J̃T (b1,T ) a(r)

)

= γ−1/(2q+1)4π2[
p∑
r=1

wr(γK2
1,q

(ˆ 1

0
f

(q)
PU ,a(r) (u, 0) du

)2

+ 2
ˆ
K2

1 (x) dx
ˆ 1

0
K2

2 (y) dy
(ˆ 1

0
fPU ,a(r) (u, 0) du

)2

)].

The right-hand side above is minimized at γopt = (2qK2
1,qφ (q))−1(

´
K2

1 (y) dy
´ 1

0 K
2
2 (x) dx). Note that

γopt > 0 provided that fPU ,a(r) (u, 0) > 0 and f
(q)
PU ,a(r) (u, 0) > 0 for some u ∈ [0, 1] and some r for

which wr > 0. Hence, {b1,T } is optimal in the sense that Tb2q+1
1,T b2,T → γopt if and only if b1,T =

bopt
1,T + o((Tb2,T )−1/(2q+1)). In virtue of Theorem 4.2-(iii), eq. (S.61) holds also when J̃T (b1,T ) is replaced

by ĴT (b1,T ). Thus, the final assertion of the theorem follows. �

S.A.2.6 Proof of Theorem 4.5

The proof of the theorem uses the following lemmas.

Lemma S.A.7. Let K1 (·) , K2 (·), {b1,θP ,T }, {SP,T }, φ̂ (·) and q be as in Theorem 4.5. Then, for all
a ∈ Rp, (i)

T 8q/5(2q+1) sup
P∈PU,3

EP

 T−1∑
k=SP,T+1

K1
(
b̂1,Tk

)
a′Γ̂ (k) a

2

→ 0;

(ii)

T 8q/5(2q+1) sup
P∈PU,3

EP

SP,T∑
k=1

(
K1

(
b̂1,Tk

)
−K1 (b1,θP ,Tk)

)
a′Γ̂ (k) a

2

→ 0.

Proof of Lemma S.A.7. First we prove part (i). We have,

(
T 8q/5(2q+1) sup

P∈PU,3

EP

 T−1∑
k=SP,T+1

K1
(
b̂1,Tk

)
a′Γ̂ (k) a

2)1/2

(S.62)

≤

T 8q/5(2q+1) sup
P∈PU,3

EP

 T−1∑
k=SP,T+1

K1
(
b̂1,Tk

) (
a′Γ̂ (k) a− a′ΓP,Ta

)2


1/2

+

T 8q/5(2q+1) sup
P∈PU,3

EP

 T−1∑
k=SP,T+1

K1
(
b̂1,Tk

)
a′ΓP,Ta

2


1/2
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, B1,T +B2,T .

Since |K1 (·) | ≤ 1 and |a′ΓP,T (k) a| ≤ a′(
´ 1

0 ΓPU ,u (k) du)a, we obtain

B2,T ≤

T 8q/5(2q+1) sup
P∈PU,3

EP

 T−1∑
k=SP,T+1

∣∣∣K1
(
b̂1,Tk

)∣∣∣ a′(ˆ 1

0
ΓPU ,u (k) du

)
a

2


1/2

(S.63)

≤ T 8q/10(2q+1) sup
P∈PU,3

T−1∑
k=SP,T+1

sup
u∈[0, 1]

a′
(ˆ 1

0
ΓPU ,u (k) du

)
a

≤ T 8q/10(2q+1) sup
P∈PU,3

T−1∑
k=SP,T+1

C3k
−l

≤ C3,1T
8q/10(2q+1) sup

P∈PU,3

ˆ ∞
SP,T

k−ldk

≤ C3,1T
8q/10(2q+1)S1−l

T,P

= T 8q/10(2q+1)+4r(1−l)/5(2q+1) → 0,

for some constant C3,1 ∈ (0, ∞), using the fact that infP∈PU,3 φP (·) ≥ φ > 0 and q/ (l − 1) < r. Let

B1,1,T =

T 8q/5(2q+1) sup
P∈PU,3

EP

 bDTT
1/2c∑

k=SP,T+1
K1

(
b̂1,Tk

)
a′ΓP,Ta


2

1/2

B1,2,T =

T 8q/5(2q+1) sup
P∈PU,3

EP

 T∑
k=bDTT 1/2c+1

K1
(
b̂1,Tk

)
a′ΓP,Ta


2

1/2

.

We have

B2
1,1,T ≤ T 8q/5(2q+1)−4/5 sup

P∈PU,3

EP

 bDTT
1/2c∑

k=SP,T+1
C1
(
b̂1,Tk

)−b√
Tb

opt
2,T

∣∣∣a′Γ̂ (k) a− a′ΓP,T (k) a
∣∣∣


2

(S.64)

≤ T 8q/5(2q+1)−4/5+8b/5(2q+1) sup
P∈PU,3

EP

 bDTT
1/2c∑

k=SP,T+1
C1k

−b
√
Tb

opt
2,T

∣∣∣a′Γ̂ (k) a− a′ΓP,T (k) a
∣∣∣


2

×
(

2qK2
1,qφ̂ (q) /(

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx)
)2b/(2q+1)

≤ C1,2T
8q/5(2q+1)−4/5+8b/5(2q+1)

× sup
P∈PU,3

 bDTT
1/2c∑

k=SP,T+1

bDTT 1/2c∑
j=SP,T+1

k−bj−bTbθ2,T

(
VarP

(
a′Γ̂ (k) a

)
VarP

(
a′Γ̂ (j) a

))1/2


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≤ C1,2T
8q/5(2q+1)−4/5+8b/5(2q+1) sup

P∈PU,3


 bDTT

1/2c∑
k=SP,T+1

k−b


2

Tb
opt
2,T

(
sup
k≥1

VarPU

(
a′Γ̂ (k) a

))

≤ C1,2T
8q/5(2q+1)−4/5+8b/5(2q+1) sup

P∈PU,3


 bDTT

1/2c∑
k=SP,T+1

k−b


2O (1)

≤ C1,3T
8q/5(2q+1)−4/5+8b/5(2q+1)−8(b−1)r/5(2q+1) → 0,

for some constants 0 < C1,2, C1,3 < ∞, using the fact that φ̂ (q) ≤ φ < ∞, infP∈PU,3 φP ≥ φ > 0 and
r > 1.25. Using similar manipulations,

B2
1,2,T ≤ T 8q/5(2q+1)−4/5 sup

P∈PU,3

EP

 T∑
k=bDTT 1/2c+1

C1
(
b̂1,Tk

)−b√
Tb

opt
2,T

∣∣∣a′Γ̂ (k) a− a′ΓP,T (k) a
∣∣∣


2

(S.65)

≤ C1,2T
8q/5(2q+1)−4/5+8b/5(2q+1) sup

P∈PU,3


 T∑
k=bDTT 1/2c+1

k−b


2O (1)

≤ C1,3T
8q/5(2q+1)−4/5+8b/5(2q+1)−(b−1) → 0,

for some constants 0 < C1,2, C1,3 < ∞ and with q satisfying 8/q − 20q < 6. Equations (S.62)-(S.65)
combine to establish part (i). We now prove part (ii). Using the Lipschitz condition on K1 (·), we get

A1,T = T 8q/5(2q+1) sup
P∈PU,3

EP

SP,T∑
k=1

(
K1

(
b̂1,Tk

)
−K1 (b1,θP ,Tk)

)
a′Γ̂ (k) a

2

(S.66)

≤ T 8q/5(2q+1) sup
P∈PU,3

EP

SP,T∑
k=1

C2
(
b̂1,T − b1,θP ,T

)
ka′Γ̂ (k) a

2

≤ C2,1T
8q/5(2q+1)−8/5(2q+1)ñ−1

T sup
P∈PU,3

EP

SP,T∑
k=1


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)

 ka′Γ̂ (k) a


2

≤ C2,1T
8q/5(2q+1)−8/5(2q+1)−6/10 sup

P∈PU,3

EP

SP,T∑
k=1


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)

 ka′Γ̂ (k) a


2

for some constant C2,1 ∈ (0, ∞), where ñT = (inf
{
n3,T /T,

√
n2,T

}
)2. Now decompose the right-hand

side above as follows,

A
1/2
1,T ≤

(
C2,1T

8q/5(2q+1)−8/5(2q+1)−6/10 sup
P∈PU,3

EP


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)


2

(S.67)
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×

SP,T∑
k=1

k
(
a′Γ̂ (k) a− a′ΓP,T (k) a

)2)1/2

+
(
C2,1T

8q/5(2q+1)−8/5(2q+1)−6/10 sup
P∈PU,3

EP


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)


2

×

SP,T∑
k=1

ka′ΓP,T (k) a

2)1/2

= A1,1,T +A1,2,T .

where we have used the fact that n
10/6
2,T /T → [c2, ∞), n10/6

3,T /T → [c3, ∞) with 0 < c2, c3 <∞. Note that,

A2
1,1,T ≤ C2,1T

8q/5(2q+1)−8/5(2q+1)−3/5S4
P,T sup

P∈PU,3

EP


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)


2

(S.68)

×

 1
SP,T

SP,T∑
k=1

k

SP,T

(
a′Γ̂ (k) a− a′ΓP,T (k) a

)2

≤ C2,1T
8q/5(2q+1)−8/5(2q+1)−3/5+16r/5(2q+1)−4/5

×

 sup
P∈PU,3

EP


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)


4

1/2

×

 sup
P∈PU,3

EP

 1
SP,T

SP,T∑
k=1

√
Tb

opt
2,T

(
a′Γ̂ (k) a− a′ΓP,T (k) a

)4


1/2

×
(

2qK2
1,qφθ∗

P
(q) /

ˆ
K2

1 (y) dy
ˆ 1

0
K2

2 (x) dx
)4r/(2q+1)

→ 0,

for some constant C2,1 ∈ (0, ∞), since supP∈PU,3 φθ∗
P
<∞ and r < 15/16 + 3q/8. In addition, we have

A2
1,2,T ≤ C2,1T

8q/5(2q+1)−8/5(2q+1)−3/5 sup
P∈PU,3

EP


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)


2

(S.69)

× sup
P∈PU,3

SP,T∑
k=1

ka′ΓP,T (k) a

2

≤ C2,1T
8q/5(2q+1)−8/5(2q+1)−3/5 sup

P∈PU,3

EP


√
ñT
(
φ̂ (q)1/(2q+1) − φθ∗

P
(q)1/(2q+1)

)
(
φ̂ (q)φθ∗

P
(q)
)1/(2q+1)


2

S-27



alessandro casini and pierre perron

× sup
P∈PU,3

SP,T∑
k=1

k1−l

2

→ 0,

where we have used the definition of P U,3-(ii), q < 11/2 and l > 2 which implies that
∑∞
k=1 k

1−l < ∞.
Equations (S.67)-(S.69) combine to establish part (ii) of the lemma. �

Proof of Theorem 4.5. Let || · ||P = (EP (·)2)1/2. For any constant J and any random variables Ĵ1 and
Ĵ2, the triangle inequality gives∥∥∥Ĵ1 − Ĵ2

∥∥∥
P
≥
∣∣∣∥∥∥Ĵ1 − J

∥∥∥
P
−
∥∥∥J − Ĵ2

∥∥∥
P

∣∣∣ . (S.70)

Hence, it suffices to show that

T 8q/5(2q+1) sup
P∈PU,3

∥∥∥a′ĴT (b̂1,T , b̂2,T) a− a′ĴT (b1,θP ,T , b
opt
2,T

)
a
∥∥∥2

P
→ 0. (S.71)

The latter follows from

T 8q/5(2q+1) sup
P∈PU,3

∥∥∥a′ĴT (b̂1,T , b̂2,T) a− a′ĴT (b1,θP ,T , b̂2,T
)
a
∥∥∥2

P
(S.72)

+ T 8q/5(2q+1) sup
P∈PU,3

∥∥∥a′ĴT (b1,θP ,T , b̂2,T
)
a− a′ĴT

(
b1,θP ,T , b

opt
2,T

)
a
∥∥∥2

P

→ 0.

Note that

a′ĴT
(
b̂1,T , b̂2,T

)
a− a′ĴT

(
b1,θP ,T , b̂2,T

)
a (S.73)

= 2
T−1∑

k=SP,T+1

(
K1

(
b̂1,Tk

)
−K1 (b1,θP ,Tk)

)
a′Γ̂ (k) a

+ 2
SP,T∑
k=1

K1
(
b̂1,Tk

)
a′Γ̂ (k) a− 2

SP,T∑
k=1

K1 (b1,θP ,Tk) a′Γ̂ (k) a.

We can apply Lemma S.A.7-(ii) to the first term of (S.73) and Lemma S.A.7-(i) to second and third terms
(with {b1,θP ,T } in place of {b̂1,T } for the third term). It remains to show that the second summand of

(S.72) converges to zero. Let ĉθ2,T (rnT /T, k) denote the estimator that uses bopt
2,T (u) in place of b̂2,T (u) .

We have for k ≥ 0,

ĉT (rnT /T, k)− ĉθ2,T (rnT /T, k)

=
(
Tb

opt
2,T

)−1 T∑
s=k+1

(
K∗2

(
((r + 1)nT − (s− k/2)) /T

b̂2,T ((r + 1)nT /T )

)
−K∗2

(
((r + 1)nT − (s− k/2)) /T

bopt
2,T ((r + 1)nT /T )

))
V̂sV̂ s−k

+OP
(
1/Tbopt

2,T

)
. (S.74)

Given Assumption 3.6-(v,vii) 4.4-(ii,iii) and using the delta method, we have for s ∈ {Tu−
⌊
Tbθ2,T

⌋
, . . . , Tu+
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⌊
Tbθ2,T

⌋
}:

K2

(
(Tu− (s− k/2)) /T

b̂2,T (u)

)
−K2

(
(Tu− (s− k/2)) /T

bopt
2,T (u)

)
(S.75)

≤ C4

∣∣∣∣∣Tu− (s− k/2)
T b̂2,T (u)

− Tu− (s− k/2)
Tbopt

2,T (u)

∣∣∣∣∣
≤ CT−4/5−2/5T 2/5

∣∣∣∣∣∣
(
D̂2 (u)
D̂1 (u)

)−1/5

−
(
D2 (u)
D1,θ (u)

)−1/5
∣∣∣∣∣∣ |Tu− (s− k/2)|

≤ CT−4/5−2/5OP (1) |Tu− (s− k/2)| .

Therefore,

T 8q/10(2q+1)
(
a′ĴT

(
bθ1,T , b̂2,T

)
a − a′ĴT (b1,θP ,T , bθ2,T ) a

)
(S.76)

= T 8q/10(2q+1)
T−1∑

k=−T+1
K1 (bθ1,Tk) nT

T

bT/nT c∑
r=0

(
a′ĉ (rnT /T, k) a− a′ĉθ2,T (rnT /T, k) a

)

≤ T 8q/10(2q+1)C
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∣∣K1 (bθ1,Tk)
∣∣nT
T

bT/nT c∑
r=0

1
Tb
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2,T

×
T∑
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∣∣∣∣∣K∗2
(

((r + 1)nT − (s− k/2)) /T
b̂2,T ((r + 1)nT /T )

)
−K∗2

(
((r + 1)nT − (s− k/2)) /T
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2,T ((r + 1)nT /T )
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×
∣∣∣(a′V̂sV̂ ′s−ka− EP

(
a′VsV
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s−ka

))
+ EP

(
a′VsV
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s−ka

)∣∣∣
, H1,T +H2,T .

We have to show that H1,T + H2,T
P→ 0. Let H1,1,T (resp. H1,2,T ) be defined as H1,T but with the sum

over k restricted to k = 1, . . . , ST (resp. k = ST + 1, . . . , T ). Let H2,1,T (resp. H2,2,T ) be defined as H2,T
but with the sum over k be restricted to k = 1, . . . , ST (resp. k = ST + 1, . . . , T ). Using the definition of
P U,3,

E
(
H2

1,1,T

)
≤ T 8q/5(2q+1)

ST∑
k=1

ST∑
j=1

K1 (bθ1,Tk)K1 (bθ1,T j)
(
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r1=0
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1(
Tb
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2,T

)2 (S.77)

×
T∑

s=k+1

T∑
t=j+1
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≤ CT (8q+8r)/5(2q+1)−2/5−1OP

((
b
opt
2,T

)−1
)
→ 0,

where we have used r < (6 + 4q) /8. Turning to H1,2,T ,

E
(
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1,2,T

)
≤ T 8q/5(2q+1)−2/5 (Tbθ2,T )−1 b−2b
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k−b
√
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2,T

(
VarP
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Γ̂ (k)

))1/2
O (1)

2

(S.78)

≤ T 8q/5(2q+1)T−2/5−1
(
b
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)−1
b−2b
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 T−1∑
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√
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2,T
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(
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))1/2
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(
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2,T

)−1
b−2b
θ1,T
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k−bO (1)

2

≤ T 8q/5(2q+1)T−2/5−1
(
b
opt
2,T

)−1
b−2b
θ1,T

S
2(1−b)
T → 0,

since r > (b − 3/4 − q/2)/ (b− 1) . Eq. (S.77) and (S.78) yield H1,T
P→ 0. Given |K1 (·)| ≤ 1 and (S.75),

we have

|H2,1,T | ≤ CT 8q/10(2q+1)T−2/5
ST∑
k=1

∣∣ΓPU ,T (k)
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≤ CT 8q/10(2q+1)T−2/5
∞∑
k=1

k−l → 0,

since
∑∞
k=1 k

−l <∞ for l > 1 and T 8q/10(2q+1)T−2/5 → 0. Finally,

|H2,2,T | ≤ CT 8q/10(2q+1)T−2/5
T−1∑

k=ST+1

∣∣ΓPU ,T (k)
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≤ CT 8q/10(2q+1)T−2/5
T−1∑

k=ST+1
k−l

≤ CT 8q/10(2q+1)T−2/5S1−l
T

≤ CT 8q/10(2q+1)T−2/5T 4r(1−l)/5(2q+1) → 0.

This completes the proof of part (ii). �
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