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1 Introduction

Classical change-point theory focuses on detecting and estimating structural breaks in the mean

or regression coefficients of time series models. Early contributions include, among others, Hinkley

(1971), Yao (1987), Andrews (1993), Horváth (1993) and Bai and Perron (1998). These works

assumed the presence of a single or multiple change-points in a parameter of an otherwise stationary

time series model, see the reviews of Aue and Hórvath (2013) and Casini and Perron (2019) for

more details. More recently there has been a growing interest on functional and time-varying

parameter models where the latter are characterized by infinite-dimensional parameters which

change continuously over time [see, e.g., Dahlhaus (1997), Hörmann and Kokoszka (2010), Zhang

and Wu (2012), Panaretos and Tavakoli (2013), Aue, Dubart Nourinho, and Hormann (2015) and

van Delft and Eichler (2018) and Aue and van Delft (2020)].

Change-point problems have been also studied in the frequency domain in several fields. Adak

(1998) investigated the detection of change-points in piecewise stationary time series by looking

at the distance in the power spectral density for two adjacent regimes. He compared several

distance metrics such as a Kolmogorov-Smirnov distance, a Crámer-Von Mises distance and the

CUSUM-type distance proposed by Coates and Diggle (1986). Last and Shumway (2008) focused

on detecting change-points in piecewise locally stationary series. They exploited some of the results

in Kakizawa, Shumway, and Taniguchi (1998) and Huang, Ombao, and Stoffer (2004) to propose

a Kullback-Liebler discrimination information but did not derive the null distribution of the test

statistic. Locally stationary series [cf. Dahlhaus (1997)] are defined by a time-varying spectral

density that changes smoothly in time. In this setup change-points are discontinuities in the time-

varying spectrum. A related yet distinct problem is the one recently considered by Aue and van

Delft (2020) who provided tests for stationarity for functional time series using frequency domain

methods.

In this paper we consider a more general change-point problem and propose inference methods

about the changes in the degree of smoothness of the spectrum of a locally stationary series, and

hence, also about change-points in the spectrum as a special case. The key parameter is the

regularity exponent that governs how smooth or rough the path of the spectral density can be over

time. We address two local problems. The first is the detection of discontinuities (or breaks) in

the spectrum at an unknown time and frequency. The second involves the detection of abrupt yet

continuous changes in the spectrum over a short time period at an unknown frequency without

signifying a break (i.e., the spectrum becomes rougher over a short time period). We consider

minimax-optimal testing and estimation for both problems, following the notion developed by

Ingster (1993). We determine the optimal rate for the minimax distinguishable boundary, i.e.,
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the minimum break magnitude such that we are still able to uniformly control type I and type II

errors.

The problem of discriminating discontinuities from a continuous evolution in a nonparametric

framework has received relatively less attention than the classical change-point problem with a

few important exceptions [Müller (1992), Müller and Stadtmuller (1999), Spokoiny (1998), Wu

and Zhao (2007) and Bibinger, Jirak, and Vetter (2017)]. These works focused on a time domain

setting while we focus on a frequency domain setting. This adds a difficulty in that e.g., the

search for a break has to run over two dimensions, the time and frequency point at which the

change-point occurs. Our test statistics are maximum of local two-sample t-tests based on the

local periodogram and local smoothed periodogram. We construct a family of tests that allows the

researcher to test for a change-point in the spectrum at a prespecified frequency and a family of

tests that allows to detect a break in the spectrum without prior knowledge about the frequency at

which the change occurs. The asymptotic null distribution follows an extreme value distribution. In

order to derive the null distribution of the tests, we establish several asymptotic results, including

bounds, for higher-order cumulants and spectra of locally stationary processes. These results

are complementary to some results in Dahlhaus (1997), Panaretos and Tavakoli (2013), Aue and

van Delft (2020) and Casini (2021), and extend some of the classical frequency domain results

for stationary processes in the time series literature [e.g., Brillinger (1975)] to locally stationary

processes.

We also address the problem of estimating the change-points. We allow for the number of

change-points to increase with the sample size and for the distance between change-points to shrink

to zero. We propose a novel procedure based on a wild sequential top-down algorithm that exploits

the idea of bisection and we combine it with the recent wild resampling approach in Fryzlewicz

(2014). We establish the consistency of the procedure for the number of change-points and their

locations. We compare the rate of convergence with that of standard change-point estimators under

the classical setting [e.g., Yao (1987), Bai (1994), Casini and Perron (2021a), Casini and Perron

(2020)]. We verify the performance of our methods via simulations which show the benefits from

using our approach. The advantage of using frequency domain methods to detect change-points

is that it does not require to make assumptions about the data-generating process under the null

hypotheses beyond the fact that the spectrum is bounded. Furthermore, the method allows for

a broader range of alternative hypotheses than time domain methods which usually have power

against some specific alternatives but not against others. Our methods are readily available for

use in many fields such as speech processing, biomedical signal processing, seismology, and failure

detection, economics and finance. It is also used as a pre-test before constrcuting the recent double

kernel long-run variance estimators to account more flexibly for nonstationarity [cf. Casini (2021),
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Casini and Perron (2021b) and Casini, Deng, and Perron (2021)]. The rest of the paper is organized

as follows. Section 2 introduces the statistical setting and the hypotheses testing problem. Section

3 develops asymptotic results for higher-order cumulants and spectra of locally stationary processes.

Section 4 presents the test statistics and derive their null distributions. Section 5 establishes the

consistency of the tests and their minimax optimality. Section 6 discusses the estimation of the

change-points while Section 7 provides details for the implementation of the methods. Monte Carlo

simulations are conducted in Section 8. Section 9 reports conclusive comments. The supplemental

material [cf. Casini and Perron (2021c)] contains all mathematical proofs. The code to implement

our method is provided in Matlab, R and Stata languages through a Github repository.

2 Statistical Environment and the Hypotheses Testing Pro-

blem

Section 2.1 introduces the statistical setting and Section 2.2 presents the hypotheses testing pro-

blem. We work in the frequency domain under the locally stationary framework introduced by

Dahlhaus (1997). Casini (2021) extended the latter framework to allow for discontinuities in the

spectrum which then results in segmented locally stationary processes. This corresponds to the

alternative hypotheses of change-points in the spectrum. Since local stationarity is a special case

of segmented local stationarity we begin with the latter.

2.1 Segmented Locally Stationary Processes

Suppose {Xt}Tt=1 is defined on an abstract probability space (Ω, F , P), where Ω is the sample

space, F is the σ-algebra and P is a probability measure. We use an infill asymptotic setting

whereby we rescale the original discrete time horizon [1, T ] by dividing each t by T. Let i ,
√
−1.

Definition 2.1. A sequence of stochastic processes Xt,T (t = 1, . . . , T ) is called segmented lo-

cally stationarity (SLS) with m0 + 1 regimes, transfer function A0 and trend µ· if there exists a

representation

Xt,T = µj (t/T ) +
ˆ π

−π
exp (iωt)A0

j,t,T (ω) dξ (ω) ,
(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (2.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T and the following holds:
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(i) ξ (ω) is a stochastic process on [−π, π] with ξ (ω) = ξ (−ω) and

cum {dξ (ω1) , . . . , dξ (ωr)} = ϕ

 r∑
j=1

ωj

 gr (ω1, . . . , ωr−1) dω1 . . . dωr,

where cum {·} is the cumulant of rth order, g1 = 0, g2 (ω) = 1, |gr (ω1, . . . , ωr−1)| ≤ Mr <∞ and

ϕ (ω) = ∑∞
j=−∞ δ (ω + 2πj) is the period 2π extension of the Dirac delta function δ (·).

(ii) There exists a constant K > 0 (which depends on j) and a piecewise continuous function

A : [0, 1] × R → C such that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic function

Aj : (λj−1, λj]× R→ C with Aj (u, −ω) = Aj (u, ω), λ0
j , T 0

j /T and for all T,

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2.2)

sup
1≤j≤m0+1

sup
T 0
j−1<t≤T

0
j , ω

∣∣∣A0
j,t,T (ω)− Aj (t/T, ω)

∣∣∣ ≤ KT−1. (2.3)

(iii) µj (t/T ) is piecewise continuous.

The smoothness properties of A in u guarantees that Vt,T has a piecewise locally stationary

behavior. We refer to Casini (2021) for several theoretical properties of SLS processes. Zhou

(2013) considered piecewise locally stationary processes in a time domain setting but his notion

is less general than the framework considered by Casini (2021). We collect the break dates in

T , {T 0
1 , . . . , T

0
m0}.

Assumption 2.1. (i) {Xt,T} is a mean-zero segmented locally stationary process; (ii) A (u, ω) is

twice continuously differentiable in u at all u 6= λ0
j , j = 1, . . . , m0 + 1 with uniformly bounded

derivatives (∂/∂u)A (u, ·) and (∂2/∂u2)A (u, ·); (iii) A (u, ω) is twice left-differentiable in u with

uniformly bounded derivatives (∂/∂−u)A (u, ·) and (∂2/∂−u
2)A (u, ·).

Assumption 2.2. (i) A (u, ω) is twice differentiable in ω with uniformly bounded derivatives

(∂/∂ω)A (·, ω) and (∂2/∂ω2)A (·, ω); (ii) g4 (ω1, ω2, ω3) is continuous in its arguments.

2.2 The Hypotheses Testing Problem

We focus on time-varying spectra that are bounded, thereby excluding unit root and long memory

processes. We consider the following classes of time-varying spectra,

F (θ, D) =
{
{f (u, ω)}u∈[0, 1], ω∈[−π, π] | sup

ω∈[−π, π],
sup

u, v∈[0, 1], |v−u|<h
|f (u, ω)− f (v, ω)| ≤ Dhθ

}
,

(2.4)
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for D < ∞. The parameter θ > 0 is the regularity exponent of f in the time dimension. For

θ > 1 f is constant in u and reduces to the spectral density of a stationary process. For θ = 1 f
is Lipschitz continuous in u. For θ < 1 f is θ-Hölder continuous. Local stationarity corresponds

to the case θ ∈ (1/2, 1] [see, e.g., Dahlhaus (1996b)]. However, most of the theoretical results

concerning locally stationary processes require differentiability which here corresponds to θ = 1.

The regularity exponent θ is the parameter that describes the null hypotheses H0. Our focus is

on (i) discontinuities of f in u and (ii) changes in the smoothness of the trajectory u 7→ f(u, ω)
for each ω. Case (i) involves a break in the spectrum, i.e., there exits λ0

b ∈ (0, 1) such that

∆f (λ0
b , ω) , (f(λ0

b , ω) − limu↓λ0
b
f(u, ω)) 6= 0 for some ω ∈ [−π, π]. Case (ii) involves a fall

in the regularity exponent from θ to θ′ after λ0
b for some period of time for some ω ∈ [−π, π]

(i.e., the spectrum becomes rougher after some λ0
b ∈ (0, 1) for some time period before returning

to θ-smoothness). Case (i) is the one that has received most attention so far in the time series

literature although under much stronger assumptions [e.g., f (u, ω) = f (ω)]. Case (ii) is a new

testing problem in spectral analysis and is of considerable interest in several fields such as finance

since it requires larger sample sizes than problem (i). We show below that our tests are consistent

and have minimax optimality properties for (i) and, under some conditions, (ii). The latter problem

constitutes a local problem. In this paper we do not consider global problems where for example

the spectrum exhibits a fall in θ from θ to θ′ ∈ (0, θ) on (λ0
b , 1]. This represents a continuous

change in the smoothness of the spectrum that persists permanently until the end of the time

interval. Different test statistics are needed for this case.

As discussed by Last and Shumway (2008), an important question is which magnitude of

the discontinuity in the time-varying spectrum can be detected. Or equivalently, how much the

time-varying spectrum can change over a short time period without signifying a discontinuity. We

introduce the quantity bT , called the detection boundary or simply “rate”, which is defined as the

minimum break magnitude ∆f (λ0
b , ω) such that we are still able to uniformly control the type I

and type II errors. To present an introduction to minimax-optimal testing [cf. Ingster (1993)],

we first restrict our attention to alternative hypotheses described by a break in the spectrum [i.e.,

case (i) above] and defer a more general treatment to Section 5. For some fractional break point

λ0
b ∈ (0, 1) and frequency ω0, and a decreasing sequence bT , we consider the following alternative

hypotheses:

F 1,λ0
b
,ω0 (θ, bT , D) =

{
{f (u, ω)}u∈[0, 1], ω∈[−π, π] | (2.5)

(f (u, ω)−∆f (u, ω))u∈[0, 1] ∈ F (θ, D) ;∣∣∣∆f (λ0
b , ω0

)∣∣∣ ≥ bT , ω0 ∈ [−π, π]
}
.
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We can then present the hypotheses testing problem that we wish to address:

H0 : {f (u, ω)}u∈[0, 1] ∈ F (θ, D) ∀ω ∈ [−π, π] (2.6)

H1 : ∃λ0
b ∈ (0, 1) andω0 ∈ [−π, π] with

{
{f (u, ω)}u∈[0, 1], ω∈[−π, π]

}
∈ F 1,λ0

b
,ω0 (θ, bT , D) .

Observe that H1 demands at least one break but it allows for multiple breaks even across dif-

ferent ω. For the testing problem (2.6), we establish the minimax-optimal rate of convergence

[see Ch. 2 in Ingster and Suslina (2003) for an introduction]. For nonrandomized tests ψ

that map a sample {Xt}t≥0 to zero or one, we consider the maximal type I error αψ (θ) =
sup{f(u, ω)}u∈[0, 1], ω∈[−π, π]∈F (θ,D) Pf (ψ = 1), and the maximal type II error

βψ (θ, bT ) = sup
λ0
b
∈(0, 1), ω0∈[−π, π]

sup
{{f(u, ω)}u∈[0, 1], ω∈[−π, π]}∈F 1,λ0

b
,ω0

(θ, bT , D)
Pf (ψ = 0) ,

and define the total testing error as γψ(θ, bT ) = αψ(θ) + βψ(θ, bT ). The notion of asymptotic

minimax-optimality is as follows. We want to find sequences of tests and rates bT such that

γψ(θ, bT ) → 0 as T → ∞. The larger is bT the easier is to distinguish between H0 from H1 but

we may incur at the same time into a larger type II error βψ (θ, bT ). The optimal bopt
T , named the

minimax distinguishable rate, is the minimum value of bT > 0 such that limT→∞ infψ γψ (θ, bT ) = 0.

A sequence of tests ψT that satisfies the latter relation for all bT ≥ bopt
T is called minimax-optimal.

Minimax-optimality has been considered in other change-point problems that are very different

from our setup. Loader (1996) and Spokoiny (1998) considered the nonparametric estimation of a

regression function with breaks where the break size is fixed. Bibinger, Jirak, and Vetter (2017)

considered breaks in the volatility of semimartingales under high-frequency asymptotics while we

focus on breaks in the spectral density and thus we work in the frequency dimension in addition

to the time dimension. Another difference from previous work is that we do not deal with i.i.d.

data; we cannot use the same approach to derive the minimax lower bound as in Bibinger, Jirak,

and Vetter (2017) because their information-theoretic reductions exploit independence while we

need to rely on approximation theorems [cf. Berkes and Philipp (1979)] to establish that our

statistical experiment is asymptotically equivalent in strong Le Cam sense to a high dimensional

signal detection problem. This allows us to derive the minimax bound using the classical arguments

based on the results in Ingster and Suslina (2003), Ch. 8.
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3 Finite-Sample and Asymptotic Results on High-Order

Cumulants and Spectra of Locally Stationary Series

This section establishes asymptotic results on second and high-order cumulants and spectra for

locally stationary series. These results are used to derived the limiting distributions of the test

statistics for the change-point problem introduced in the prevision section. Additionally, these

results are of independent interest for the literature on locally stationary and nonstationarity

processes more generally. We consider the tapered finite Fourier transform, the local periodogram

and the smoothed local periodogram. Let h : R→ R be a data taper with h (x) = 0 for x /∈ [0, 1),
Hk,T (ω) = ∑T−1

s=0 h (s/T )k exp (−iωs) and (for nT even)

dh,T (u, ω) ,
nT−1∑
s=0

h
(
s

nT

)
XbTuc−nT /2+s+1,T exp (−iωs) ,

Ih,T (u, ω) , 1
2πH2,nT (0) |dh,T (u, ω)|2 ,

where Ih,T (u, ω) is the periodogram over a segment of length nT with midpoint bTuc. Let Xt,T =(
X

(a1)
t,T , . . . , X

(ap)
t,T

)
with finite p ≥ 1. Denote by κ

(a1,...,ar)
X,t (k1, . . . , kr−1) the time-t r-order cumulant

of (X(a1)
t+k1 , . . . , X

(ar−1)
t+kr−1 , X

(ar)
t ) with r ≤ p.

Assumption 3.1. (i) {Xt,T} is a mean-zero locally stationary process (i.e., m0 = 0); (ii) for all

1 ≤ j ≤ p A(aj) (u, ω) is 2π-periodic in ω and the periodic extensions are differentiable in u and

ω with uniformly bounded derivative (∂/∂u) (∂/∂ω)A (u, ω); (iii) g4 is continuous.

Assumption 3.2. There is an l ≥ 0 such that

∞∑
k1,..., kr−1=−∞

(
1 + |kr|l

)
sup

1≤t≤T

∣∣∣κ(a1,...,ar)
X,t (k1, . . . , kr−1)

∣∣∣ <∞, (3.1)

for j = 1, . . . , r − 1 and any r tuple a1, . . . , ar when r = 2, 3, . . .

Assumption 3.3. The data taper h : R → R with h (x) = 0 for x /∈ [0, 1] is bounded and of

bounded variation.

Assumption 3.4. The sequence {nT} satisfies nT →∞ as T →∞ with nT/T → 0.

3.1 Local Finite Fourier Transform

The above theorem presents the asymptotic expression for the joint cumulants of the finite Fourier

transform d
(·)
T (u, ·). Next, we use this result to obtain the limit distribution of the transform.
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Let dh,T (u, ω) = [d(aj)
h,T (u, ω)], j = 1 ≤ j ≤ r. Corresponding results for stationary series are

reviewed in e.g. Brillinger (1975). Let H(a1,..., ar)
nT

(ω) = ∑nT−1
s=0

(∏r
j=1 haj (s/nT )

)
exp (−iωs) and

H(a1,..., ar) (ω) =
´ (∏r

j=1 haj (t)
)

exp (−iωt) dt.

Theorem 3.1. Suppose that Assumption 3.1-3.2 with l = 0 hold. Assume that h(aj) (x) satisfies

Assumption 3.3 for all j = 1, . . . , p. Under Assumption 3.4,

cum
(
d

(a1)
h,T (u, ω1) , . . . , d(ar)

h,T (u, ωr)
)

= (2π)r−1H(a1,..., ar)
nT

 r∑
j=1

ωj

 f (u, ω1, . . . , ωr−1) + εT ,

where εT = o (nT ) is uniform in ωj, (j = 1, . . . , r). If Assumption 3.2 holds with l = 1, then

εT = O (nT/T ) uniformly in ωj, (j = 1, . . . , r).

Theorem 3.2. Suppose that Assumption 3.1-3.2 with l = 0 hold. Assume that h(aj) (x) satis-

fies Assumption 3.3 for all j = 1, . . . , p. Suppose 2ωj, ωj ± ωk 6≡ 0 (mod 2π) for 1 ≤ j <

k ≤ Jω. Under Assumption 3.4, (i) dh,T (u, ωj) , j = 1, . . . , Jω are approximately independent

N C
p

(
0, 2πnT

[
H(al,ar) (0) f (al,ar) (u, ωj)

])
(l, r = 1, . . . , p) variables; (ii) If ω = 0, ±π, ±2π, ±3π,

. . . , dh,T (u, ω) is asymptotically Np

(
0, 2πnT

[
H(al,ar) (0) f (al,ar) (u, ω)

])
(l, r = 1, . . . , p) indepen-

dently from the previous variates.

3.2 Local Periodogram

We now study several properties of the tapered local periodogram. We begin with the finite-

sample bias and variance. We then present results on the asymptotic distribution which allow us

to conclude that the local periodogram evaluated at distinct ordinates results in estimates that

are asymptotically independent thereby mirroring the stationary case. These results are useful in

order to develop hypothesis testing on the time-varying properties of the spectrum of a time series.

Theorem 3.3. Suppose that Assumption 3.1 holds and that

∞∑
k=−∞

sup
u∈[0, 1]

|c (u, k)| <∞. (3.2)

Assume that h (x) satisfies Assumption 3.3. Under Assumption 3.4, we have for −∞ < ω <∞,

E (Ih,T (u, ω)) =
(ˆ π

−π
|HnT (α)|2 dα

)−1 ˆ π

−π
|HnT (α)|2 f (u, ω − α) dα +O

(
log (nT )
nT

)
(3.3)
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= f (u, ω) + 1
2

(
nT
T

)2
(ˆ 1

0
h2 (x) dx

)−1 ˆ 1

0
x2h2 (x+ 1/2) dx ∂

2

∂u
f (u, ω)

+ o

((
nT
T

)2
)

+O

(
log (nT )
nT

)
.

The first equality shows that the expected value of Ih,T (u, ω) is a weighted average of the local

spectral density at rescaled time u with weights concentrated in the neighborhood of ω and relative

weights determined by the taper. The second equality shows that Ih,T (u, ω) is asymptotically

unbiased for f (u, ω) and provides a bound on the asymptotic bias.

Theorem 3.4. Suppose that Assumption 3.1 holds and that h (·) satisfies Assumption 3.3. Under

Assumption 3.4 we have (i) for −∞ < ωj, ωk <∞,

Cov {Ih,T (u, ωj) , Ih,T (u, ωk)} (3.4)

= |H2,nT (0)|−2
(
|H2,nT (ωj − ωk)|2 + |H2,nT (ωj + ωk)|2

)
f (u, ωj)2 +O

(
n−1
T

)
,

where the error term is uniform in ωj and ωk; (ii) for 2ωj, ωj ± ωk 6≡ 0 (mod 2π) with 1 ≤ j <

k ≤ Jω, the variables Ih,T (u, ωj) , j = 1, . . . , Jω are asymptotically independent f (u, ωj)χ2
2/2

variates. Also, if ω = ±π, ±3π, . . ., Ih,T (u, ω) is asymptotically f (u, ω)χ2
1 independent of the

previous variates.

3.3 Smoothed Local Periodogram

The smoothed local periodogram is defined as

fh,T (u, ω) = 2π
nT

nT−1∑
s=1

WT

(
ω − 2πs

nT

)
Ih,T

(
u,

2πs
nT

)
−∞ < ω <∞,

where WT (ω), −∞ < ω <∞, is a family of weight functions of period 2π,

WT (ω) =
∞∑

j=−∞
b−1
W,TW

(
b−1
W,T (ω + 2πj)

)
−∞ < ω <∞

where bW,T is a bandwidth and W (β) , −∞ < β < ∞, is a fixed function satisfying the following

assumption.

Assumption 3.5. W (β) , −∞ < β <∞, is real-valued, even, of bounded variation, and satisfies´∞
−∞W (β) dβ = 1 and

´∞
−∞ |W (β)| dβ <∞.
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Theorem 3.5. Suppose that Assumption 3.1 holds, that h (·) satisfies Assumption 3.3, Assumption

3.4 holds with l = 1, and W (·) satisfies Assumption 3.5. Then,

E (fh,T (u, ω)) =
ˆ ∞
−∞

W (β) f (u, ω − bW,Tβ) dβ +O
(
(nT bW,T )−1

)
+O

(
log (nT )n−1

T

)
(3.5)

= f (u, ω) + 1
2

(
nT
T

)2
(ˆ 1

0
h2 (x) dx

)−1 ˆ 1

0
x2h2 (x+ 1/2) dx ∂

2

∂u
f (u, ω)

+ 1
2b

2
W,T

ˆ 1

0
x2W (x) dx ∂

2

∂ω
f (u, ω) +O

(
log (nT )
nT

)
+ o

((
nT
T

)2
)

+ o
(
b2
W,T

)
.

The error terms are uniform in ω.

Theorem 3.6. Suppose that Assumption 3.1 holds, that h (·) satisfies Assumption 3.3, Assumption

3.4 holds with l = 1, and W (·) satisfies Assumption 3.5. Let bW,T → 0, bW,TnT →∞, as T →∞.

Then fh,T (u, ω1) , . . . , fh,T (u, ωJω) are asymptotically jointly normal with limT→∞ E (fh,T (u, ω)) =
f (u, ω) and

lim
T→∞

nT bW,TCov (fh,T (u, ωj) , fh,T (u, ωk)) (3.6)

= 2π [η {ωj − ωk}+ η {ωj + ωk}]
ˆ
h (t)4 dt

[ˆ
h (t)2 dt

]−2 ˆ
W (α)2 dα f (u, ωj)2 .

Consistency of the spectral density estimates of a stationary time series were obtained by

Grenander and Rosenblatt (1957) and Parzen (1957). Asymptotic normality was considered by

Rosenblatt (1959), Brillinger and Rosenblatt (1967), Hannan (1970) and Anderson (1971). Theo-

rem 3.6 presented corresponding results for the locally stationary case which nightlight the nature

of the smoothing over time in addition to over the frequency domain. Panaretos and Tavak-

oli (2013) established similar results for functional stationary processes while Aue and van Delft

(2020) established some results for functional locally stationary processes using a different notion

of local stationarity.

4 Change-Point Tests for Discontinuity in the Spectrum

We construct tests for the hypothesis testing problem in (2.6). The test statistics involve the local

periodogram. It follows from the results of Section 3 that under local stationarity Ih,T (t/T, ω) is

asymptotically unbiased for f (t/T, ω). Let Ĩr,T (ω) = M−1
S,T

∑
j∈Sr Ih,T (j/T, ω) where Sr = {rmT−

mT/2+1, rmT−mT/2+1+mS,T , . . . , rmT+MS,TmS,T/2}, mS,T =
⌊
m

1/2
T

⌋
and MS,T = bmT/mS,T c.

Ĩr,T (ω) denotes the average local periodogram around time rmT where r = 1, . . . , MT = bT/mT c

10
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where we do not use all the mT local periodograms Ih,T (j/T, ω) in the block r but only those

separated by mS,T points. Thus, Sr is the set of indices of a sub-sample of the local periodograms

in the r block. We need to consider the sub-sample because otherwise there is too much dependence

among the adjacent terms e.g., Ih,T (j/T, ω) and Ih,T ((j + 1) /T, ω). Ĩr,T (ω) is an asymptotically

unbiased estimate for f (rmT/T, ω). Thus, a large distance between Ĩr,T (ω) and Ĩr+1,T (ω) suggests

the presence of a jump or unsmooth break in the spectrum close to time (r + 1)mT and at frequency

ω. We first present a test statistic for the detection of a change-point in the spectrum f (·, ω) for a

given frequency ω. A second test statistic that we consider is one that can detect change-points in

u ∈ [0, 1] occurring at any frequency ω ∈ [−π, π]. The latter is arguably more useful in practice

because often the practitioner does not know a priori whether the spectrum is discontinuous at a

low or high frequency.

We consider the following test statistic,

Imax,T (ω) , max
r=1,...,MT−2

∣∣∣∣∣ Ĩr+1,T (ω)− Ĩr,T (ω)
σr (ω)

∣∣∣∣∣ , ω ∈ [−π, π] , (4.1)

where σ2
r (ω) , Var(

√
MS,T Ĩ

∗
r,T (ω)) and Ĩ∗r,T (ω) is equal to Ĩr,T (ω) with Ih,T (j/T, ω) replaced by

I∗T (j/T, ω) = Ih,T (j/T, ω)−E(Ih,T (j/T, ω)). Test statistics of the form of (4.1) were also used in

the context of nonparametric change-point analysis [cf. Wu and Zhao (2007) and Bibinger, Jirak,

and Vetter (2017)] and forecasting [cf. Casini (2018)]. For the test statistic (4.1), the derivation of

the null distribution uses the (strong) invariance principle for nonstationary processes [see e.g., Wu

(2007a) and Wu and Zhou (2011)]. We need to impose some conditions on the serial dependence.

Let {et} , t ∈ Z, be a sequence of i.i.d. random variables. Assume I∗h,T (j/T, ω) = Hh(j/T,
Fj+nT /2), where Ft , {. . . , et−1, et} and Hh : [0, 1] × R∞ 7→ R is a measurable function. We

use the physical dependence measure introduced by Wu (2005, 2007) for stationary processes and

extended to nonstationary processes by Wu and Zhou (2011). Let {e′t}t∈Z be an independent

copy of {e′t}t∈Z. Let L q denote the space generated by the q-norm, q > 0. For all j assume

I∗h,T (j/T, ω) ∈ L q. For w ≥ 0 define the physical dependence measure,

φw,q = sup
j∈{Sr; r=1,...,MT−2}

∥∥∥I∗h,T (j/T, ω)− I∗h,T,{w} (j/T, ω)
∥∥∥
q

(4.2)

= sup
j∈{Sr; r=1,...,MT−2}

∥∥∥Hh

(
j/T, Fj+nT /2

)
−Hh

(
j/T, Fj+nT /2,{w}

)∥∥∥
q
,

where Fj+nT /2,{w} is a coupled version of Fj+nT /2 with ej+nT /2−w replaced by an i.i.d. copy

e′j+nT /2−w. Assume Υn,q = ∑∞
j=n φj,q <∞. Let τT = T ϑ1 (log (T ))ϑ2 where ϑ1 = (1/2− 1/q + γ/q)

/ (1/2− 1/q + γ) and ϑ2 = (γ + γ/q) / (1/2− 1/q + γ) for some γ > 0.

11
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Assumption 4.1. Let 2 < q ≤ 4 and assume either (i) Υn,q = O (n−γ) or (ii) φw,q = O (ρw) for

some ρ ∈ (0, 1).

Condition 1. (i) The sequence {mT} satisfies mT →∞ as T →∞, and

M
1/2
S,Tm

θ
TT
−θ (log (MT ))1/2 + τ 2

T log (MT )M−1
S,T +MS,Tn

4
T log (MT )T−4 +MS,T (log (nT ))2 log (MT )n−2

T

(4.3)

+MS,T (log (nT ))2 log (MT )n−2
T → 0;

(ii) For {bW,T} defined in Section 3 assume that log (MT )mT b
4
W,T → 0.

Part (i) imposes a lower bound and an upper bound on the growth condition of the se-

quence {mT}. The upper bound relates to the smoothness of A (u, ω) under the null hypothe-

ses and to nT . Part (ii) is used for the additional test statistics proposed below. Let γMT
=

[4 log (MT )− 2 log (log (MT ))]1/2 and V denote a random variable defined by P (V ≤ v) = exp(
−π−1/2 exp (−v)).

Theorem 4.1. Assume Assumption 3.1, 3.3-3.4, 4.1, eq. (3.2) and Condition 1-(i) hold. Under

H0, we have
√

log (MT )
(
M

1/2
S,T Imax,T (ω)− γMT

)
⇒ V for any ω ∈ [−π, π].

Theorem 4.1 shows that the asymptotic null distribution follows an extreme vale distribution.

We discuss the consistent estimation of σ2
r (ω) below.

The test statistic Imax,T (ω) detects breaks in the spectrum for a given frequency ω. A

first alternative would be to consider a double-sup statistic which takes the maximum also over

ω ∈ [−π, π]. This changes only slightly the distribution because the Imax,T (ω) are independent

across ω. This follows from Theorem 3.4 which shows that Ih,T (u, ωj) and Ih,T (u, ωk) are asymp-

totically independent if 2ωj, ωk±ωk 6≡ 0 (mod 2π), and the maximum of independent extreme value

distributed random variables still follows an extreme value distribution. We need to introduce the

notation for such double-sup setting. We specify a framework based on an infill procedure over the

frequency domain [−π, π] by assuming that there are nω frequencies ω1, . . . , ωnω , with ω1 = −π
and ωnω = π− ε, ε > 0, and |ωj − ωj+1| = O (n−1

ω ) for j = 1, . . . , nω − 2. Assume that nω →∞ as

T →∞. Let Π , {ω1, ω2, . . . , , ωnω−1, ωnω}.

Assumption 4.2. Assume that 2ωj, ωj ± ωk 6≡ 0 (mod 2π) for ωj, ωk ∈ Π.

Theorem 4.2. Suppose that Assumption 3.1, 3.3-3.4, 4.1-4.2, eq. (3.2) and Condition 1-(i) hold.

Under H0, we have IDmax,T = maxω∈Π

√
log (MT )

(
M

1/2
S,T Imax,T (ω)− γMT

)
− log (nω)⇒ V .

12
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The double-sup specification results in the extra factor log (nω) affecting the null distribution

of the test. The last test statistic that we consider is based on the smoothed local periodogram

fh,T (u, ω). Under H0 the unsmoothed version is only asymptotically unbiased for f (u, ω) while

fh,T (u, ω) is consistent for f (u, ω). We define f̃r,T (ω) = M−1
S,T

∑
j∈Sr fh,T (j/T, ω) and

Smax,T (ω) , max
r=1,...,MT−2

∣∣∣∣∣ f̃r,T (ω)− f̃r+1,T (ω)
σf,r (ω)

∣∣∣∣∣, (4.4)

where ω ∈ [−π, π] , σ2
f,r (ω) , Var(

√
MS,T f̃r,T (ω)), and f ∗h,T (j/T, ω) = fh,T (j/T, ω) −E(fh,T (j/T

, ω)). Smoothing over frequencies introduces short-range dependence over ω. The maximum is

taken over the following set of frequencies Π′ , {ω1, ω2+bnT bT c, . . . , ωnω−bnT bT c−1, ωnω}. Let n′ω =
bnω/ (bnT bT c+ 1)c. Note that Π′ ⊂ Π. The reason is that, due to the short-range dependence intro-

duced by the smoothed periodogram, we cannot consider the maximum over all frequencies in Π be-

cause the statistics would not be independent. Let SDmax,T , maxωk∈Π′
√

log (MT )(M1/2
S,T Smax,T (ωk)−

γMT
)− log (n′ω).

Theorem 4.3. Assumption 3.1, 3.3-3.4, 4.1-4.2, eq. (3.2) and Condition 1 hold. Under H0 we

have
√

log (MT )(M1/2
S,T Smax,T (ωk)− γMT

⇒ V and SDmax,T ⇒ V .

5 Consistency and Minimax Optimal Rate of Convergence

In this section we discuss the consistency and minimax-optimal lower bound under a more general

setting than the one introduced in Section 2. We consider alternative hypotheses where f is less

smooth than under H0, thereby including the case of breaks as a special case. Suppose that under

H0 the spectrum of Xt behaves until time Tλ0
b as a spectrum in F (θ, D) where θ > 0 and D <∞.

After Tλ0
b , the regularity exponent θ drops to some θ′ with 0 < θ′ < θ for some non-trivial period of

time. That is, since F (θ, D) ⊂ F (θ′, D), we need that f behaves as θ′-regular for some period of

time such that there exists a ω with {f (u, ω)}u∈[0, 1] /∈ F (θ, D) . This guarantees that H0 and H′1
(to be defined below) are well-separated. To this end, define for some function gu with u ∈ [0, 1],
∆θ′
h gu = (gu+h − gu) / |h|θ

′
, h ∈ [−u, 1− u] . The set of possible alternatives is then defined as

F ′1,λ0
b
,ω0

(θ, θ′, bT , D) = {{f (u, ω)}u∈[0, 1], ω∈[−π, π] ∈ F (θ′, D) |

inf
|h|≤2mT /T

∆θ′

h f
(
λ0
b , ω0

)
≥ bT or ∆θ′

h f
(
λ0
b , ω0

)
≤ −bT}.

13
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Note that F ′1,λ0
b
,ω0

depends on mT but since mT depends on θ we can omit mT from the argument

of F ′1,λ0
b
,ω0

. This leads to the following testing problem

H0 : {f (u, ω)}u∈[0, 1] ∈ F (θ, D) (5.1)

H′1 : ∃λ0
b ∈ (0, 1) andω0 ∈ [−π, π] with

{
{f (u, ω)}u∈[0, 1], ω∈[−π, π]

}
∈ F ′1,λ0

b
,ω0

(θ, θ′, bT , D) .

In the context of infinite-dimensional parameter problems one faces the issue of distinguishability

between the null and the alternative hypotheses. It is evident that one cannot test f ∈ F (θ, D)
versus f ∈ F (θ′, D) for θ > θ′. First, since F (θ, D) ⊂ F (θ′, D), one has to at least remove

the set of functions in F (θ, D) from those in F (θ′, D). Yet, as discussed by Ingster and Suslina

(2003), this would not be enough. The reason is that the two hypotheses are still too close. That

explains why we focus on spectral densities f that belong to F ′1,λ0
b
,ω0

(θ, θ′, bT , D) underH1. Those

spectral densities are rough enough so as not to be close to functions in F (θ, D). This is captured

by the requirement that the different quotient ∆θ′
h f exceeds the so-called rate bT . As T →∞ the

requirement becomes less stringent since bT → 0. See Hoffmann and Nickl (2011) and Bibinger,

Jirak, and Vetter (2017) for similar discussions in different contexts.

We now move to the derivation of the minimax lower bound. For a purely technical re-

ason inherent to the proof we need to restrict attention to a strictly positive spectral density

in the frequency dimension at which the null hypotheses is violated. That is, let f− (ω0) =
infu∈[0, 1] f (u, ω0) > 0. Such restriction is not imposed on f (u, ω) for ω 6= ω0.

Theorem 5.1. Assume Assumption 2.1-2.2, 3.3-3.4, eq. (3.2), 0 < θ′ < θ and f− (ω0) > 0.

Consider either set of hypotheses {H0, H1} or {H0, H′1}. Then, for

bT ≤ (T/ log (MT ))−
θ−θ′
2θ+1 D−

2θ′+1
2θ+1 f− (ω0) ,

where θ′ = 0 for H1, we have limT→∞ infψ γψ (θ, bT ) = 1.

The theorem implies that bopt
T is such that bopt

T > (T/ log (MT ))−
θ−θ′
2θ+1 D−

2θ′+1
2θ+1 f− (ω0) . Note

that the lower bound does not depend on ω. Thus, we can derive tests based on bopt
T . For example,

for the test statistic (4.1) we obtain the following test ψ∗ : ψ∗({Xt}1≤t≤T ) = 1 if Imax,T (ω) ≥
2D∗

√
log (M∗

T ) /m∗T for ω ∈ [−π, π], where D∗ > 2, m∗T = (
√

log (M∗
T )T θ/D)

2
2θ+1 and M∗

T =
bT/m∗T c.

Next, we establish the optimal rate for minimax distinguishability. Note that either alter-

natives H1 or H′1 allows for multiple breaks which may occur close to each other. For technical

reasons one has to either assume that the breaks do not cancel each other or assume that they
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cannot be too close. Here we assume the latter thereby following the definition of segmented locally

stationary.

Theorem 5.2. Assume Assumption 2.1-2.2, 3.3-3.4 and eq. (3.2) hold. Consider either alter-

native hypothesis H1 or H′1, with λ0
j < λ0

j+1 for j = 1, . . . , m0 − 1. If (nT/T )2 + log (nT ) /nT ≤
2D∗

√
log (M∗

T ) /m∗T and

b∗T >

(
4D∗ sup

u∈[0, 1]
f (u, ω0) + 2

)− θ−θ′2θ+1

(T/ log (M∗
T ))−

θ−θ′
2θ+1 D−

2θ′+1
2θ+1 , (5.2)

then limT→∞ γψ∗ (θ, b∗T ) = 0 and bopt
T ∝ (T/ log (MT ))−

θ−θ′
2θ+1 .

The theorem shows that a smooth change in the regularity exponent θ cannot be distinguish

from a break of magnitude smaller than bopt
T or in other words F 1,λ0

b
,ω0 * F ′1,λ0

b
,ω0

because the

change in θ to θ′ has to persist for some time. This is also indicated by the restriction θ′ > 0.
The minimax bound is similar to the one established by Bibinger, Jirak, and Vetter (2017) for the

volatility of a Itô semimartingale. The theorem suggests that knowledge of the frequency ω0 for

which the spectrum changes regularity is irrelevant for the determination of the bound. However,

we conjecture that if the spectrum exhibits a break or smooth change of the form discussed above

simultaneously across multiple frequencies then the lower bound may be further decreased as one

can pool additional information from inspection of the spectrum for the set of frequencies subject

to the change. The key assumption would be that the change occurs at the same time λ0
b for a

given set of frequencies ω. This may be of some interest in economics and finance since it has

been documented for some time series that a break in the mean or trend (or other low frequency

components) can be associated to a break in the volatility at the same date. Thus, f (u, ω) may as

well exhibit a break simultaneously at high and low frequencies. We leave this to future research.

The theorem also requires further restrictions on the relation between nT and mT .

6 Estimation of the Change-Points

We now discuss estimation of the break locations. We first discuss the case of a single break and

then present the results for the case of multiple breaks.

6.1 Single Break Alternatives

Let IT (j/T, ω) = (2πnT )−1 |dT (j/T, ω)|2 with dT (j/T, ω) = ∑nT−1
s=0 Xj−nT+s+1,T exp (−iωs). The

estimation of the change-point is based on the following statistic:

15



alessandro casini and pierre perron

Dr,T (ω) , m
−1/2
T

∣∣∣∣∣∣
r∑

j=r−mT+1
IT (j/T, ω)−

r+mT∑
j=r+1

IT (j/T, ω)

∣∣∣∣∣∣ , ω ∈ [−π, π] .

where r = mT +nT − 1, . . . , T −mT . We use the untapered periodogram, IT (·, ·), instead of tape-

red one, Ih,T (·, ·), to simplify the notation in the proofs. Note that the maximum of the statistics

Dr,T (ω)’s is a version of Imax,T that uses overlapping blocks and that does not involve the normaliza-

tion σr (ω) . The change-point estimator is defined as T λ̂b,T = arg maxr=mT+nT−1,..., T−mT Dr,T (ω).
We consider the following alternative hypotheses:

H1,S :
{
f
(
T 0
b /T, ω0

)
− f

(
T 0
b,+/T, ω0

)
= δT 6= 0, ω0 ∈ [−π, π]

}
,

where T 0
b,+ = lims↓T 0

b
, s>T 0

b
s. The break magnitude can be either fixed or converge to zero as

specified by the following assumption.

Assumption 6.1. δT → 0 and δTm
1/2
T /

√
log (T )→ (0, ∞].

Proposition 6.1. Assume Assumption 3.1, 3.3-3.4, 4.1, eq. (3.2) and Condition 1-(i) hold. Under

H1,S, if δT is fixed or satisfies Assumption 6.1, we have (i) λ̂b,T − λ0
b = OP(

√
mT log(T )/(TδT )).

It is useful to compare the rate of convergence in Proposition 6.1 with that of classical change-

point estimators of a break in a constant mean. For fixed shifts, the latter rate of convergence is

OP(T−1) while for shrinking shifts isOP((Tδ2
T )−1) where δT → 0 with δTT

1/2−ϑ for some ϑ ∈ (0, 1/2)
[cf. Yao (1987)]. Unlike the classical change-point problem where the mean is constant except for

the break, our problem involves a time-varying target also under the null. For fixed shifts the rate

of convergence in our problem is slower. The smallest break magnitude allowed by Proposition 6.1

is δT = O(
√

log (T )/m1/2
T ). Under this condition the convergence rate for the classical change-point

estimator is OP(mT (T log (T ))−1) which is the same as the one suggested by Proposition 6.1, saved

for a logarithmic term. However, in classical change-point setting δT → 0 is allowed at a faster

rate. This is obvious since in our setting a small break can be confounded with a smooth local

change in the target.

Under the alternative H′1 the estimator is consistent only when θ-regularity is violated in a

small interval around λ0
b . If the length of this interval exceeds O(

√
mT log (T )/TδT ), then con-

sistency does not hold because this becomes a global problem which cannot be addressed by the

estimation method considered in this section.
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6.2 Multiple Breaks Alternatives

Let us assume that there are m0 break points in f (u, ω0). Let 0 < λ0
1 < . . . < λ0

m0 < 1. We

consider the following alternative hypotheses:

H1,M :
{
f
(
T 0
l /T, ωl

)
− f

(
T 0
l,+/T, ωl

)
= δl,T 6= 0, ωl ∈ [−π, π] for 1 ≤ l ≤ m0

}
.

We provide a consistency result for both m0 and the actual location of the breaks λ0
l , 1 ≤ l ≤ m0.

Let I ⊆ {2mT , . . . , bT/mT cmT −mT} denote a generic index set. One possibility would be to

test for a break in I by using the test ψ∗({Xr}r∈I), and if the test rejects one would estimate the

break using

T λ̂T (I) = argmax
r∈I

max
ω∈[−π, π]

Dr,T (ω) . (6.1)

One would then update the set I by excluding a vT -neighborhood of T λ̂T and repeat the above

steps. This is a sequential top-down algorithm exploiting the classical idea of bisection. However,

this procedure does not maximize power. For example, consider the first step of the algorithm in

which we test for the first break. If the true break T 0
1 falls in between two indices in I, r1 and

r2 = r1 + mT say, then min {Dr1,T (ω) , Dr2,T (ω)} > Dr,T (ω) for r 6= r1, r2 with large probability

and Dr1,T (ω) would take the difference between two adjacent blocks where the one to the left

of r1 contains observations prior to the change-point while the block to the right of r1 contains

observations from both regimes [a similar argument applies to Dr2,T (ω)]. Clearly, this does not

maximize either power or precision of the location estimate. One would need to compare two

adjacent blocks exactly separated at T 0
1 ∈ (r1, r2) . This is a common problem in the change-

point literature whose importance is often underestimated. Here we introduce a wild sequential

top-down algorithm. Continuing with the above example, we draw randomly without replacement

K ≥ 1 separation points r� from the interval (r1, r2) and compute for each separation point

Dr�,T (ω) where r� ∈ (r1, r2) . We take the maximum of them. Then, we update I by removing

r1 and adding r�. We repeat this for all indices in I. Because the K separation points are drawn

randomly, there is always some probability to pick up the separation point that guarantees the

highest power. The careful reader may wonder why we do not take all integers between r1 and

r2 and compute Dr�,T (ω) for each of them. The reason is that in applications involving high

frequency data (e.g., weakly, daily, and so on) that would be computationally more intensive if

there are multiple breaks and one wants mT to change when searching for an additional break

since the sample where there are undetected breaks becomes smaller after a break is found. We

are now ready to present the algorithm. Guidance as to suitable choice of K will be given below.
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Let vT →∞ with vT/T → 0 and mT/vT → 0.

Algorithm 1. Set Î = {2mT , 3mT , . . . , bT/mT cmT −mT} and T̂ = ∅.
(1) For r ∈ Î\ {2mT}, uniformly draw (without replacement) K points r�· from I (r) = {r−mT +1,
. . . , r} and compute r� = arg maxk=1,...,K maxω∈[−π, π] Dr�

k
,T (ω); set Î = (Î\ {r}) ∪ {r�}.

(2) If ψ∗({Xr}r∈Î) = 0 where ψ∗ (·) is defined in Section 5, return T̂ = ∅. Otherwise proceed with

step (3);

(3) Estimate the change-point via (6.1) by using Î. Name it T λ̂T
(
Î
)
;

(4) Set Î = Î\
{
T λ̂T

(
Î
)
− vT , . . . , T λ̂T

(
Î
)

+ vT
}

and T̂ = T̂ ∪
{
T λ̂T

(
Î
)}

. Repeat step (1).

Finally, arrange the estimated change-points in T̂ in chronological order and use the symbol

|S| for the cardinality of a set S. Name these change-points λ̂l,T , l = 1, . . . , m0. To each λ̂l,T the

procedure can return the frequency ω̂l

Assumption 6.2. We have δl,T → 0 with inf1≤l≤m0 δl,T ≥ 2D∗m−1/2
T (log (T ))2/3. For νT =

o (T/vT ) it holds that inf1≤l≤m0−1

∣∣∣λ0
l+1 − λ0

l

∣∣∣ ≥ ν−1
T .

Proposition 6.2. Assume Assumption 3.1, 3.3-3.4, 4.1, eq. (3.2) and Condition 1-(i) hold.

Then, under H1,M we have (i) P
(∣∣∣T̂ ∣∣∣ = m0

)
→ 1 and sup1≤l≤m0

∣∣∣λ̂l,T − λ0
l

∣∣∣ = oP (1), and (ii)

sup1≤l≤m0

∣∣∣λ̂l,T − λ0
l

∣∣∣ = OP

(√
mT log (T )/ (T inf1≤l≤m0 δl,T )

)
. Furthermore, if K = O (aTmT ) with

aT ∈ (0, 1] such that aT → 1, then the breaks are detected in descending order of magnitude.

The number of draws K maybe fixed or increase with the sample size. However, the al-

gorithm can return break dates according to the descending order of break magnitudes only if

K = O (aTmT ) with aT as above. The number of breaks can go to infinity as long as m0/νT → 0.
Note that at each loop of the algorithm it is not possible to know to which λ0

l (l = 1, . . . , mb) the

estimate λ̂T is consistent for. Only after all breaks are detected and we rearrange the estimated

change-points in T̂ in chronological order, we can learn such information.

7 Implementation

In this section we explain how to consistently estimate σr (ω) and σf,r (ω), and how to choose

the tuning parameters. Let Îh,T (j/T, ω) = Ih,T (j/T, ω) − Ĩr,T (ω) for j ∈ Sr. Define σ̂2
r (ω) =∑MS,T−1

j=−MS,T+1K1 (b1,T jmS,T ) Γ̂r (j) where

Γ̂r (j) =


M−1

S,T

∑
t∈{Sr/{..., rmT−mT /2+1+mS,T (j−1), j>0}} Îh,T (t/T, ω) Îh,T ((t− jmS,T ) /T, ω) , j ≥ 0

M−1
S,T

∑
t∈{Sr/{..., rmT−mT /2+1+mS,T (j−1), j>0}} Îh,T ((t) /T, ω) Îh,T ((t+ jmS,T ) /T, ω) j < 0
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The estimate σ̂2
r (ω) is a local long run variance estimator where K1 is a kernel and b1,T is the

associated bandwidth.

Let f̂h,T (j/T, ω) = fh,T (j/T, ω)− f̃r,T (ω) for j ∈ Sr. Define σ̂2
f,s (ω) similarly to σ̂2

r (ω) but

f̂h,T in place of Îh,T . Consistency of either estimates follows from the results in Vogt (2012) and

Casini (2021).

The choice of the sequences can be based on mean-squares error (MSE) criterion or cross-

validation where one can exploit derived results for locally stationary series. For example, data-

dependent methods for bandwidths in the context of locally stationary processes were investigated

by Casini (2021), Dahlhaus (2012), Dahlhaus and Giraitis (1998) and Richter and Dahlhaus (2019).

The optimal amount of smoothing depends on θ, q and on the amount of dependence in the data.

Further, the optimal values have to satisfy Condition 1. In this work we focus on the optimal order

for the bandwidths, neglecting the constants. We relegate to future work a more detailed analysis

of data-dependent methods for this problem where multiple smoothing directions are present. For

spectral densities satisfying Lipschitz continuity θ = 1 so that mT ∝ T 2/3−ε while for θ = 1/2 we

have mT ∝ T 1/2−ε, ε > 0. Often Lipschitz continuity is assumed and so we use optimal bandwidths

for θ = 1. Assuming q = 4 and γ large enough we have τT ∝ T 1/4 and so the optimal values that

satisfy Condition 1 are mT ∝ T 2/3−ε, nT ∝ T 5/8−ε and bW,T = n
−1/6
T . We employ two data tapers

h (t/T ) = 1 for all 0 ≤ t ≤ T and h (t/T ) = exp
(
−2−1 ((t− T/2) /T )2

)
for all 0 ≤ t ≤ T . Also we

set vT = T 2/3so as to guarantee the condition mT/vT → 0. We set b1,T = M
−1/3
S,T .

8 Small-Sample Evaluations

In this section, we conduct a Monte Carlo analysis to evaluate the properties of the proposed

methods. Our simulation exercise is similar to Last and Shumway (2008). We first discuss the

detection of the breaks and then the localization of the change-points. We investigate different

types of change-point and compare the statistics Imax,T (ω) , IDmax,T , SDmax,T , the statistic in Adak

(1998) and in Last and Shumway (2008). We consider the following data-generating processes

where in all models the innovation et is a Gaussian white noise et ∼ i.i.d.N (0, 1). Model M1

involves a stationary AR(1) process Xt = ρXt−1 + et with ρ = 0.3 and 0.6, while M2 involves a

locally stationary AR(1) Xt = ρ (t/T )Xt−1 + et where ρ (t/T ) = 0.4 cos (0.8− cos (2t/T )) . Note

that ρ (t/T ) varies smoothly from 0.1389 to 0.4. Model M1 and M2 are used to verify the finite-

sample size of the tests. We verify the power in models M3 and M4 using the model in M1 and

M2 for the first regime of M3 and M4, respectively. That is, in model M3 we specify
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Xt =


0.3Xt−1 + et, 1 ≤ t ≤ bTλ0

1c

0.6Xt−1 + 0.7et, bTλ0
1c+ 1 ≤ t ≤ bTλ0

2c

0.6Xt−1 + et bTλ0
2c+ 1 ≤ t ≤ T.

,

while in model M4 we specify

Xt =


ρ (t/T )Xt−1 + 0.7et, 1 ≤ t ≤ bTλ0

1c

0.8Xt−1 + et, bTλ0
1c+ 1 ≤ t ≤ bTλ0

2c

ρ (t/T )Xt−1 + 0.7et bTλ0
2c+ 1 ≤ t ≤ T,

,

where ρ (t/T ) is as in model M2. In model M3 there are three regimes. The model in the first

regime is as in M1, the second regime involves higher serial dependence while in the third regime

the variance doubles relative to the second regime. In model M4 the data-generating process in the

first regime is the same as in model M2. In the second regime the model is a stationary AR process

with strong serial dependence while in the third regime Xt assumes the same dynamics as in the

first regime. Model M3-M4 feature alternative hypotheses in the forms of breaks in the spectrum.

We consider the alternative hypothesis in of more rough variation without signifying a break in

the following model, named M5, Xt = σ (t/T ) et, where σ2 (t/T ) = σ2 + cos (1 + cos (10t/T )) with

σ2 = 1. Note that even though σ2 (·) is locally stationary, it alternates its degree of smoothness

throughout the sample. It starts from σ2 (·) = 1 and it maintains this value for some time, then

it increases slowly to σ2 (·) = 2 and keeps this value for some time. Finally, it decreases slowly

back σ2 (·) = 1. Thus, σ2 (·) alternates periods where it is constant and periods where it becomes

rougher (i.e., it varies smoothly). Importantly, no break occurs; only a change in the smoothness

as specified in H′1 in Section 5.

Next, we consider the estimation of the number of change-points (m0) and of the locations of

the change-points. We consider the following two models, both with m0 = 2. Model M6 is given

by

Xt =


0.7et, 1 ≤ t ≤ bTλ0

1c

0.6Xt−1 + 0.7et, bTλ0
1c+ 1 ≤ t ≤ bTλ0

2c

0.6Xt−1 + et bTλ0
2c+ 1 ≤ t ≤ T.

,

while model M7 is the same as model M4. We set λ0
1 = 0.33 and λ0

2 = 0.66 throughout. We use
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T = 250, 500, 1000 in model M1-M5 and T = 1000 in model M6-M7. The number of simulations

is 5,000. Table 1 reports the results for the size of the tests for model M1-M2.

Next, we move to the estimation to the number of change-points m0. Table 1 reports the

summary statistics for m̂ −m0. For each method, we list the estimated change-points in chrono-

logical order so that we can focus on T̂1 − T 0
1 and T̂2 − T 0

2 where T̂1 < T̂2.

Our results show that raising K from K = 1 (default) to K = mT/3 lead to more precise estimates

without excessively increasing the computing time.

9 Conclusions

We develop a theoretical framework for inference about the smoothness of the spectral density

over time. We provide frequency domain statistical tests for the detection of discontinuities in the

spectrum of a segmented locally stationary time series and for changes in the regularity exponent

of the spectral density over time. We provide different test statistics depending on whether prior

knowledge about the frequency component at which the change-point occurs is available. The

null distribution of the test follows an extreme value distribution. We rely on the theory on

minimax-optimal testing developed by Ingster (1993). We determine the optimal rate for the

minimax distinguishable boundary, i.e., the minimum break magnitude such that we are still able

to uniformly control type I and type II errors. We propose a novel procedure for estimation

of the change-points based on a wild sequential top-down algorithm and show its consistency

under shrinking shifts and possibly growing number of change-points. The advantage of using

frequency domain methods to detect change-points is that it does not require to make assumptions

about the data-generating process under the null hypotheses beyond the fact that the spectrum

is bounded. Furthermore, the method allows for a broader range of alternative hypotheses than

time domain methods which usually have power against some specific alternatives but not against

others. Therefore, our method can be useful across many fields.

21



alessandro casini and pierre perron

References

Adak, S. (1998): “Time-Dependent Spectral Analysis of Nonstationary Time Series,” Journal of

the American Statistical Association, (444), 1488–1501.

Anderson, T. W. (1971): The Stastical Analysis of Time Series. New York: Wiley.

Andrews, D. W. K. (1993): “Tests for Parameter Instability and Structural Change with

Unknown Change-Point,” Econometrica, 61(4), 821–56.

Aue, A., D. Dubart Nourinho, and S. Hormann (2015): “On the Prediction of Stationary

Functional Time Series,” Journal of the American Statistical Association, 110(509), 378–392.
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10 Appendix

10.1 Tables

Table 1: Empirical small-sample size for model M1-M2
Model M1

α = 0.05 T = 250 T = 500 T = 1000
Smax,T 0.039 0.043 0.053
SDmax,T 0.029 0.049 0.037
Rmax,T 0.040 0.058 0.042
RDmax,T 0.015 0.032 0.034

D̂ statistic 0.581 0.471 0.068
Model M4

T = 250 T = 500 T = 1000
Smax,T 0.061 0.059 0.061
SDmax,T 0.035 0.055 0.058
Rmax,T 0.036 0.035 0.036
RDmax,T 0.015 0.032 0.035

D̂ statistic 0.731 0.583 0.102
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Table 2: Empirical small-sample power for model M3-M5
Model M3

α = 0.05 T = 250 T = 500 T = 1000
Smax,T 0.694 0.850 0.889
SDmax,T 0.734 0.890 0.921
Rmax,T 0.768 0.940 0.973
RDmax,T 0.456 0.752 0.874

D̂ statistic 0.961 0.967 0.790
Model M4

T = 250 T = 500 T = 1000
Smax,T 0.868 0.977 0.973
SDmax,T 0.938 0.988 0.996
Rmax,T 0.927 0.997 0.999
RDmax,T 0.775 0.983 0.998

D̂ statistic 1.000 1.000 1.000
Model M5

T = 250 T = 500 T = 1000
Smax,T 0.223 0.475 0.565
SDmax,T 0.325 0.801 0.918
Rmax,T 0.028 0.237 0.369
RDmax,T 0.001 0.189 0.304

D̂ statistic 0.834 0.695 0.172

Table 3: Summary statistics for the empirical distribution of m̂−m0
Summary of m̂−m0

Percent time m̂ = m0 Q0.25 Median Q0.75

Model M6

Algorithm 1 (T̂j, j = 1, . . . , m̂) 85.50 T̂1 299 333 352

T̂2 622 663 688
Model M7

Algorithm 1 (T̂j, j = 1, . . . , m̂) 80.12 T̂1 307 340 350

T̂2 603 650 685
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S.A Mathematical Appendix

S.A.1 Preliminary Lemmas

Let LT : R→ R, T ∈ R+ be the 2π-periodic extension of

LT (ω) ,
{
T, |ω| ≤ 1/T,
1/ |ω| , 1/T ≤ |ω| ≤ π.

For a complex-valued function f define HnT (f (·) , ω) =
∑nT−1
s=0 f (s) exp (−iωs), and, for the taper h (x) ,

Hk,nT (ω) = HnT

(
hk
(
·
nT

)
, ω
)
, and HnT (ω) = H1,nT (ω) .

Lemma S.A.1. Let Π , (−π, π]. We obtain the following with a constant K independent of T : (i)
LT (ω) is monotone increasing in T and decreasing in ω ∈ [0, π]; (ii)

´
Π LT (α) dα ≤ K lnT for T > 1.

Proof of Lemma S.A.1. See Lemma A.4 in Dahlhaus (1997). �

Lemma S.A.2. Let nT , T ∈ N. Suppose h (·) satisfies Assumption 3.3 and ϑ : [0, 1]→ R is differentiable
with bounded derivative. Then we have for 0 ≤ t ≤ nT ,

HnT

(
ϑ

( ·
nT

)
h

( ·
nT

)
, ω

)
= ϑ

(
t

nT

)
HnT (ω) +O

(
sup
x
|dϑ (x) /dx| nT

T
LnT (ω)

)
= O

(
sup

x≤nT /T
|ϑ (x)|LnT (ω) + sup

x
|dϑ (x) /dx|LnT (ω)

)
.

The same holds, if ϑ (·/T ) is replaced on the left side by numbers ψs,T with sups |ϑs,T − ϑ (s/T )| = O
(
T−1).

Proof of Lemma S.A.2. Dahlhaus (1997) proved this result under differentiability of h (·). By Abel’s
transformation [cf. Exercise 1.7.13 in Brillinger (1975)],

HnT

(
ϑ

( ·
T

)
h

( ·
nT

)
, ω

)
− ϑ

(
t

T

)
HnT (ω) =

nT−1∑
s=0

[
ϑ

(
s

T

)
− ϑ

(
t

T

)]
h

(
s

nT

)
exp (−iωs)

= −
nT−1∑
s=0

[
ϑ

(
s

T

)
− ϑ

(
s− 1
T

)]
Hs

(
h

( ·
nT

)
, ω

)
+
[
ϑ

(
nT − 1
T

)
− ϑ

(
t

T

)]
HnT

(
h

( ·
nT

)
, ω

)
. (S.1)

By repeated application of Abel’s transformation,

Hs

(
h

( ·
nT

)
, ω

)
=

s−1∑
t=0

h

(
t

s

)
exp (−iωt)

=
s−1∑
t=0

(
h

(
t

s

)
− h

(
t− 1
s

))
Ht (1, ω)

+ h

(
nT − 1
nT

)
HnT (1, ω)

=
s−1∑
t=0

(
h

(
t

s

)
− h

(
t− 1
s

))
Ht (1, ω) + 0,

S-1
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where we have used h ((nT − 1) /nT ) − h (1) = O
(
n−1
T

)
and h (x) = 0 for x /∈ [0, 1). Since h (·) is of

bounded variation, if |ω| ≤ 1/s we have

s−1∑
t=0

∣∣∣∣(h( ts
)
− h

(
t− 1
s

))∣∣∣∣ |Ht (1, ω)| ≤
s−1∑
t=0

t

∣∣∣∣(h( ts
)
− h

(
t− 1
s

))∣∣∣∣
≤ (s− 1)

s−1∑
t=0

∣∣∣∣(h( ts
)
− h

(
t− 1
s

))∣∣∣∣
≤ C (s− 1) ,

whereas if 1/s ≤ |ω| ≤ π we have,

s−1∑
t=0

∣∣∣∣(h( ts
)
− h

(
t− 1
s

))∣∣∣∣ |Ht (1, ω)| ≤ C 1
|ω|

s−1∑
t=0

∣∣∣∣(h( ts
)
− h

(
t− 1
s

))∣∣∣∣
≤ C 1
|ω|

.

Thus, Hs

(
h
(
·
nT

)
, ω
)
≤ Ls (ω) ≤ LnT (ω) where the last inequality follows by Lemma S.A.1-(i). It

follows from (S.1) that,

HnT

(
ϑ

( ·
T

)
h

( ·
nT

)
, ω

)
− ϑ

(
t

T

)
HnT (ω) = O

(
sup

x≤nT /T
|ϑ (x)|LnT (ω) + sup

x
|dϑ (x) /dx|LnT (ω)

)
.�

Lemma S.A.3. Assume that h(aj) (x) satisfies Assumption 3.3 for all j = 1, . . . , p, then we have for
some C with 0 < C <∞,∣∣∣∣∣
nT−1∑
s=0

h
(a1)
T (s+ k1) · · ·h(ap−1)

T (s+ kp−1)h(a1)
T (s) exp (−iωs)−H(a1,··· , ap)

T (ω)
∣∣∣∣∣ ≤ C (|k1|+ . . .+ |kp−1|) .

Proof of Lemma S.A.3. See Lemma P4.1 in Brillinger (1975). �

Lemma S.A.4. Let {YT } be a sequence of p vector-valued random variables, with (possibly) complex

components, and such that all cumulants of the variate
(
Y

(a1)
T , Y

(a2)
T , . . . , Y

(ap)
T , Y

(ap)
T

)
exist and tend

to the corresponding cumulants of a variate
(
Y (a1), Y

(a1)
, . . . , Y (ap), Y

(ap))
that is determined by its

moments. Then YT tends in distribution to a variate having components Y (a1), . . . , Y (ap).

Proof of Lemma S.A.4. It follows from Lemma P4.5 in Brillinger (1975).

S.A.2 Proofs of the Results of Section 3

S.A.2.1 Proof of Theorem 3.1

For bTuc − nT /2 + 1 ≤ t1, . . . , tp ≤ bTuc+ nT /2− 1,

cum
(
Xt1,T , . . . , Xtp,T

)
=
ˆ π

−π
· · ·
ˆ π

−π
exp (it1ω1 + · · ·+ itpωp)A0

t1,T (ω1) · · ·A0
tp,T (ωp) η

 p∑
j=1

ωj

 gp (ω1, . . . , ωp−1) dω1 · · · dωp.
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We can replace A0
tj ,T

(ωj) by A (tj/T, ωj) using (2.3), and then replace A (tj/T, ωj) by A (bTuc , ωj) using

the smoothness of A (u, ·). Altogether, this gives an error O (nT /T ). Let t1 = tp+k1, . . . , tp−1 = tp+kp−1.
We have

cum
(
Xt1,T , . . . , Xtp,T

)
=
ˆ π

−π
· · ·
ˆ π

−π
exp (i ((ω1 + · · ·+ ωp−1) tp + ω1k1 + · · ·+ ωp−1kp−1 + tpωp))

×A (bTuc , ω1) · · ·A (bTuc , ωp) η

 p∑
j=1

ωj

 gp (ω1, . . . , ωp−1) dω1 · · · dωp +O (nT /T )

=
ˆ π

−π
· · ·
ˆ π

−π
exp (i ((ω1 + · · ·+ ωp−1 + ωp) tp + ω1k1 + · · ·+ ωp−1kp−1))

×A (bTuc , ω1) · · ·A (bTuc , ωp) η

 p∑
j=1

ωj

 gp (ω1, . . . , ωp−1) dω1 · · · dωp +O (nT /T )

, κTu,tp (k1 . . . , kp−1) +O (nT /T ) .

This shows that cum
(
Xt1,T , . . . , Xtp,T

)
depends on tp only through exp (i (ω1 + · · ·+ ωp−1 + ωp) tp). By

Lemma P4.1 of Brillinger (1975),

|
nT−1∑
s=0

ha1

(
s+ k1
nT

)
· · ·hap−1

(
s+ kp−1
nT

)
hap

(
s

nT

)
exp

i p∑
j=1

ωjs

−H(a1,··· , ap)
T

 p∑
j=1

ωj

 |
≤ C (|k1|+ . . .+ |kp−1|) .

The cumulant has then the form,

cum
(
d

(a1)
T (u, ω1) , . . . , d(ap)

T (u, ωp)
)

=
ˆ π

−π
· · ·
ˆ π

−π
HnT

(
A

0,(a1)
bTuc−nT /2+1+·,T (γ1)h

( ·
nT

)
, ω1 − γ1

)
×HnT

(
A

0,(a2)
bTuc−nT /2+1+·,T (γ2)h

( ·
nT

)
, ω2 − γ2

)
× · · ·

×HnT

(
A

0,(ap)
bTuc−nT /2+1+·,T (γp)h

( ·
nT

)
, ωp − γp

)

× exp {i ((γ1 + · · ·+ γp) bTuc)} η

 p∑
j=1

γj

 gp (γ1, . . . , γp−1) dγ1 · · · dγp.

By Lemma S.A.2, the latter is equal to

ˆ π

−π
· · ·
ˆ π

−π
A(a1) (u, γ1) · · ·A(ap) (u, γp)

×HnT (ω1 − γ1) · · ·HnT (ωp − γp)
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× exp (i ((γ1 + · · ·+ γp) bTuc)) η

 p∑
j=1

γj

 gp (γ1, . . . , γp−1) dγ1 · · · dγp,

plus a remainder term Ru with

|Ru| ≤ C
nT
T

ˆ π

−π
· · ·
ˆ π

−π
LnT (ω1 − γ1) · · ·LnT (ωp − γp) exp (i ((γ1 + · · ·+ γp) bTuc)) (S.2)

× η

 p∑
j=1

γj

 gp (γ1, . . . , γp−1) dγ1 · · · dγp

≤ CnT
T

ˆ π

−π
· · ·
ˆ π

−π
LnT (ω1 − γ1) · · ·LnT (ωp − γp) dγ1 · · · dγp

≤ CnT
T

(lnnT )p ,

where we have used gp (γ1, . . . , γp−1) ≤ constp, the fact that
´ π
−π exp {i (γ bTuc)} = 2 sin (π bTuc) / bTuc,

and the third equality follows from Lemma S.A.1-(ii).
Next, note that the function HnT (ω) will have substantial magnitude only for ω near some multiple

of 2π. Thus, by continuity of A (·, ω), gp, and of the exponential function we yield

ˆ π

−π
· · ·
ˆ π

−π
A(a1) (u, ω1) · · ·A(ap) (u, ωp) (S.3)

×HnT (ω1 − γ1) · · ·HnT (ωp − γp)

× exp (i ((ω1 + · · ·+ ωp) bTuc)) η

 p∑
j=1

ωj

 gp (ω1, . . . , ωp−1) dγ1 · · · dγp,

By Lemma P4.1 of Brillinger,

|
nT−1∑
s=0

ha1

(
s+ k1
nT

)
· · ·hap−1

(
s+ kp−1
nT

)
hap

(
s

nT

)
exp

i p∑
j=1

ωjtp

−H(a1,..., ap)
T

 p∑
j=1

ωj

 |
≤ C (|k1|+ · · ·+ |kp|)

Thus, eq. (S.3) is equal to

nT∑
k1=−nT

· · ·
nT∑

kp−1=−nT

exp

i p−1∑
j=1

ωjkj

κTu,tp (k1 . . . , kp−1)H(a1,..., ap)
T

 p∑
j=1

ωj

+O (nT /T )


+εT

with

|εT | ≤ C
nT∑

k1=−nT

· · ·
nT∑

kp−1=−nT

κTu,tp (k1 . . . , kp−1) (|k1|+ · · ·+ |kp|) <∞.
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Therefore, it remains to show that

nT∑
k1=−nT

· · ·
nT∑

kp−1=−nT

exp

i p−1∑
j=1

ωjkj

κTu,tp (k1 . . . , kp−1) = (2π)p−1 f (a1,..., ap) (u, ω1 . . . , ωp−1) .

We have

nT∑
k1=−nT

· · ·
nT∑

kp−1=−nT

exp

i p−1∑
j=1

ωjkj

κTu,tp (k1 . . . , kp−1)

=
nT∑

k1=−nT

· · ·
nT∑

kp−1=−nT

ˆ π

−π
· · ·
ˆ π

−π
exp (i (ω1 + · · ·+ ωp−1 + ωp) tp + γ1k1 + · · ·+ γp−1kp−1)

×A (bTuc , ω1) · · ·A (bTuc , ωp) η

 p∑
j=1

γj

 gp (ω1, . . . , ωp−1) dγ1 · · · dγp

nT∑
k1=−nT

· · ·
nT∑

kp−1=−nT

ˆ π

−π
· · ·
ˆ π

−π
exp (i (ω1 + · · ·+ ωp−1 + ωp) bTuc+ γ1k1 + · · ·+ γp−1kp−1)

×A (bTuc , ω1) · · ·A (bTuc , ωp) η

 p∑
j=1

γj

 gp (ω1, . . . , ωp−1) dγ1 · · · dγp.

Since
∑p
j=1 ωj ≡ 0 (mod 2π), ωp is normalized and so the latter is equivalent to

nT∑
k1=−nT

· · ·
nT∑

kp−1=−nT

ˆ π

−π
· · ·
ˆ π

−π
exp (i (ω1 + · · ·+ ωp−1 + ωp) bTuc+ γ1k1 + · · ·+ γp−1kp−1)

A (bTuc , ω1) · · ·A (bTuc , ωp) gp (ω1, . . . , ωp−1) dγ1 · · · dγp−1.

Then, A (bTuc , ω1) · · ·A (bTuc , ωp) gp (ω1, . . . , ωp−1) = f (a1,..., ap) (u, ω1, . . . , ωp−1). In view of the follo-
wing identities [see e.g., Exercise 1.7.5-(c,d) in Brillinger (1975)],

nT∑
k=−nT

exp (−iωk) = sin (nT + 1/2)ω
sinω/2 ,

ˆ π

−π

sin (nT + 1/2)ω
sinω/2 dω = 2π,

we yield

cum
(
d

(a1)
T (u, ω1) , . . . , d(ap)

T (u, ωp)
)

= (2π)p−1H
(a1,..., ap)
T

 p∑
j=1

ωj

 f (a1,..., ap) (u, ω1, . . . , ωp−1) +O (1) +O (nT /T ) ,

which concludes the proof. �
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S.A.2.2 Proof of Theorem 3.2

Proof of Theorem 3.2. We have,

E (dh,T (u, ω)) =
nT−1∑
s=0

exp (−iωs)E
(
XbTuc−nT /2+s+1,T

)
= 0.

By Theorem 3.1,

n−1
T Cov

(
d

(al)
h,T (u, ±ωj) , d(ar)

h,T (u, ±ωk)
)

(S.4)

= n−1
T 2πH(al, ar)

nT
(±ωj ∓ ωk) f (al, ar) (u, ±ωj (nT )) + o (1) +O

(
n−1
T

)
.

Note that [see e.g., Lemma P4.6 in Brillinger (1975)],∣∣∣H(a1,..., ap)
nT

(ω)
∣∣∣ ≤ C

|sin (ω/2)| , (S.5)

where C is a constant with 0 < C <∞. In part (i) we have ωj ± ωk 6≡ 0 (mod 2π), thus the first term on
the right-hand side of (S.4) tends to zero using (S.5). In part (ii) we have ±ωj ∓ ωk ≡ 0 (mod 2π), thus
the right-hand side of (S.4) tends to

2πH(al, ar)
T (0) f (al,ar) (u, ±ωj) = 2π

(ˆ
h(al) (t)h(ar) (t) dt

)
f (al,ar) (u, ±ωj) .

This shows that the second-order cumulants behave as indicated by the theorem. By Theorem 3.1 for
r > 2,

n
−r/2
T cum

(
d

(a1)
h,T (u, ±ωj1) , . . . , d(ar)

h,T (u, ±ωjr)
)

= n
−r/2
T (2π)r−1H

(a1,..., ar)
T (±ωj1 ± · · · ± ωjr) fX(a1)···X(ar)

(
u, ±ωj1 , . . . , ±ωjr−1

)
+ o

(
n

1−r/2
T

)
.

This last tends to 0 as nT →∞ if r > 2 because H
(a1,..., ap)
T (ω) = O (T ). Thus, also the cumulants of order

higher than two behave as indicated by the theorem. This implies that the cumulants of the considered
variables and the conjugates of those variables tend to the cumulants of Gaussian random variable. Since
the distribution of the latter is fully determined by its moments, the theorem follows from Lemma S.A.4.
�

S.A.2.3 Proof of Theorem 3.3

The proof of the second equality in (3.3) is similar to Dahlhaus (1996a) who proved the result under
stronger assumptions on the data taper. Using the spectral representation (2.1),

cum (dh,T (u, ω) , dh,T (u, −ω))

=
nT−1∑
t=0

nT−1∑
s=0

h

(
t

T

)
h

(
s

T

)
exp (−i (ω − η) (s− t))A0

bTuc−nT /2+t (η)A0
bTuc−nT /2+s (−η) dη.
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We use Abel’s transformation to replace A0
bTuc−nT /2+t (η) by A (u, ω) ,

|
nT−1∑
t=0

h

(
t

nT

)(
A0
bTuc−nT /2+t (η)−A (u, ω)

)
exp (−i (ω − η) t) |

= |
nT−1∑
t=0

(
A0
bTuc−nT /2+t (η)−A0

bTuc−nT /2+t−1 (η)
)
Ht

(
h

( ·
nT

, ω − η
))
|

+ |
(
A0
bTuc−nT /2+nT−1 (η)−A (u, ω)

)
HnT

(
h

( ·
nT

)
, ω − η

)
|

≤ O
(
nT
T

)
LnT (ω − η) +

(
O

(
nT
T

)
+O (|ω − η|)

)
LnT (ω − η) ,

where the inequality follows from using Lemma S.A.2,∣∣∣∣Ht

(
h

( ·
nT

, ω − η
))∣∣∣∣ ≤ Lt (ω − η) ≤ LnT (ω − η) . (S.6)

Since we are dividing by
∑nT−1
s=0 h (s/nT )2 ∼ nT we get,

n−1
T

∣∣∣∣∣
nT−1∑
t=0

h

(
t

nT

)(
A0
bTuc−nT /2+t (η)−A

(
u+ t− nT /2

T
, ω

))
exp (−i (ω − η) t)

∣∣∣∣∣
≤ O

( 1
T

)
LnT (ω − η) +

(
O

( 1
T

)
+ n−1

T O (|ω − η|)
)
LnT (ω − η)

≤ O
( 1
T

)
LnT (ω − η) +

(
O

( 1
T

)
+ n−1

T O (|ω − η|)
)
LnT (ω − η)

≤ C <∞

where we have used the fact that LnT (ω − η) ≤ nT and that

|ω − η|LnT (ω − η) =
{
|ω − η|nT , |ω − η| ≤ 1/nT
|ω − η| / |ω − η| , 1/nT ≤ |ω − η| ≤ π

.

Using Lemma S.A.2 and (S.6) we have,

n−1
T

∣∣∣∣∣
nT−1∑
s=0

h

(
s

T

)
exp (i (ω − η) s)A0

bTuc−nT /2+s (−η) dη
∣∣∣∣∣

= n−1
T A ((bTuc − nT /2) /T, −η)HnT (−ω + η) +O

(
T−1

)
= n−1

T O

(
sup

u≤nT /T
A (u, −η)

)
LnT (−ω + η) +O

(
T−1

)
.

Thus, after integration over η we yield that error in replacingA0
bTuc−nT /2+t (η) byA (u, ω) isO ((lognT ) /nT ).

Next, we replace A0
bTuc−nT /2+s (−η) by A (u, ω) and integrate over η using the relation

A (u, ω)A (u, −ω) = |A (u, ω)|2 = f (u, ω) .
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In view of

ˆ π

−π
|HnT (α)|2 dα = 2π

nT−1∑
t=0

(
t

nT

)2
, (S.7)

we then yield

E (Ih,T (u, ω)) = 1
2πH2,nT (0)

nT−1∑
t=0

nT−1∑
s=0

h

(
t

T

)(
s

T

)
exp (−i (ω − η) (s− t)) f (u, ω) +O

( lognT
nT

)
(S.8)

= 1´ π
−π |HnT (α)|2 dα

ˆ π

−π
|HnT (ω − α)|2 f (u, α) dα+O

( lognT
nT

)

= 1´ π
−π |HnT (α)|2 dα

ˆ π

−π
|HnT (α)|2 f (u, ω − α) dα+O

( lognT
nT

)
.

This shows the first equality of (3.3). For the second equality of (3.3) replace A0
bTuc−nT /2+t (η) by

A
(
u+ t−nT /2

T , ω
)

andA0
bTuc−nT /2+t (−η) byA

(
u+ t−nT /2

T , −ω
)

so that (S.8) holds with f
(
u+ t−nT /2

T , ω
)

in place of f (u, ω). Then take a second-order Taylor expansion of f around around u to obtain

E (Ih,T (u, ω)) = 1
2πH2,nT (0)

nT−1∑
t=0

h

(
t

T

)2
f

(
u+ t− nT /2

T
, ω

)
+O

( lognT
nT

)

= f (u, ω) + 1
2

(
nT
T

)2 ˆ 1

0
x2h2 (x+ 1/2) dx ∂

2

∂u2 f (u, ω) + o

((
nT
T

)2
)

+O

( lognT
nT

)
.�

S.A.2.4 Proof of Theorem 3.4

By Theorem 2.3.1-(ix) in Brillinger (1975), Cov (Yj , Yk) = cum
(
Yj , Y k

)
for possibly complex variables

Yj and Yk. Thus,

Cov (dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, ωk) dh,T (u, −ωk))

= cum
(
dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, ωk) dh,T (u, −ωk)

)
= cum

(
dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, ωk)dh,T (u, −ωk)

)
= cum (dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, −ωk) dh,T (u, ωk))
= cum (dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, ωk) dh,T (u, −ωk)) .

By the product theorem for cumulants [cf. Brillinger (1975), Theorem 2.3.2], we have to sum over all
indecompasable partitions {P1, . . . , Pm} with |Pi|= card(Pi) ≥ 2 of the two-way table,

a1,1a1,2
...
...

al,1al,2

where aj,1 and aj,2 stand for the position of dh,T (u, ωj) and dh,T (u, −ωj), respectively. This results in,

cum (dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, ωk) dh,T (u, −ωk))
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= cum (dh,T (−ωj) , dh,T (−ωj) , dh,T (ωk) , dh,T (−ωk))
+ cum (dh,T (ωj)) cum (dh,T (−ωj) , dh,T (ωk) , dh,T (−ωk))
+ three similar terms
+ cum (dh,T (ωj)) cum (dh,T (ωk)) cum (dh,T (−ωj) , dh,T (−ωk))
+ three similar terms
+ cum (dh,T (ωj) , dh,T (−ωk)) cum (dh,T (−ωj) , dh,T (−ωk))
+ cum (dh,T (ωj) , dh,T (−ωk)) cum (dh,T (−ωj) , dh,T (ωk)) .

Then, by Theorem 3.1,

cum (dh,T (u, ωj) dh,T (u, −ωj) , dh,T (u, ωk) dh,T (u, −ωk)) (S.9)

= (2π)3H4,nT (0) f (u, ωj , −ωj , ωk) +O (1)
+ [2πH2,nT (ωj + ωk) f (u, ωj) +O (1)] [2πH2,nT (−ωj − ωk) f (u, ωj) +O (1)]
+ [2πH2,nT (ωj − ωk) f (u, ωj) +O (1)] [2πH2,nT (−ωj + ωk) f (u, ωj) +O (1)] .

GivenH2,nT (0) =
∑nT−1
t=0 h2 (t/T ) ∼ nT

´
h2 (α) dα andH2,nT (ωj − ωk)H2,nT (−ωj + ωk) = |H2,nT (ωj − ωk)|2 ,

the result of the theorem follows because

n−2
T (2π)3H4,nT (0) f (u, ωj , −ωj , ωk) = O

(
n−1
T

)
,

and because the O (1) terms on the right-hand side of (S.9) becomes negligible when multiplied by
H−2

2,nT (0).
Next, we prove that second result of the theorem. Recall that z ∼ N C

p (µz, Σz) means that the 2p
vector [

Re z
Im z

]

is distributed as

N2p

([
Reµz
Imµz

]
; 1

2

[
Re Σz −Im Σz

−Im Σz Re Σz

])
,

where Σz is a p×p hermitian positive semidefinite matrix. By Theorem 3.2 we know that Re dh,T (ωj) , Im dh,T (ωj)
are asymptotically independent N (0, πnT f (u, ωj)) variates. Hence, by the Mann-Wald Theorem,

Ih,T (u, ωj (nT )) = (2πnT )−1
{

(Re dh,T (u, ωj (nT )))2 + (Im dh,T (ωj (nT )))2
}
,

is asymptotically distributed as f (u, ωj)χ2
2/2 if 2ωj 6≡ 0 (mod 2π). In addition, if ω = ±π, ±3π, . . . then

Ih,T (u, ω) is asymptotically distributed as f (u, ωj)χ2
1 independently from the previous variates. �
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S.A.2.5 Proof of Theorem 3.5

Using Theorem 3.3,

E (fh,T (u, ω)) = 2π
nT

nT−1∑
s=0

WT

(
ω − 2πs

nT

)
E
(
Ih,T

(
u,

2πs
nT

))

= 2π
nT

nT−1∑
s=0

WT

(
ω − 2πs

nT

)
f

(2πs
T

)
+O

(
log (nT )n−1

T

)
.

Next, we approximate the sum appearing by an integral, then we see that the first term on the right-hand
side is

= 2π
nT

nT−1∑
s=0

WT

(
ω − 2πs

nT

)
f

(
u,

2πs
nT

)

=
ˆ 2π

0
WT (ω − α) f (u, α) dα+O

(
(nT bT )−1

)
=
ˆ 2π

0

∞∑
j=−∞

b−1
T W

(
b−1
T (ω − α+ 2πj)

)
f (u, α) dα+O

(
(nT bT )−1

)
=
ˆ ∞
−∞

W (β) f (u, ω − βbT ) dβ +O
(
(nT bT )−1

)
,

where the last equality follows from the change in variable β = b−1
T (ω − α). This yields the first equality

of (3.5). The second equality follows from the first and Theorem 3.3. �

S.A.2.6 Proof of Theorem 3.6

Let cT (u) = H2,T (0)−1∑nT−1
s=0 h

(
s+k
T

)
h
(
s
T

)
XbTuc−nT /2+s+k+1,TXbTuc−nT /2+s+1,T . Ih,T (u, ω) can be

written as (2π)−1∑∞
k=−∞ exp (−iωk) cT (k). Note that

fh,T (u, ω) =
ˆ 2π

0
W2,T (ω − α) Ih,T (u, α) dα,

where W2,T (ω) =
∑∞
k=−∞w (bTk) exp (−iωk) and w (k) =

´∞
−∞W (α) exp (iαk) dα for k ∈ R. From

Theorem 3.3 we have E (Ih,T (u, ω)) = fh,T (u, ω) +O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
, and so

E (fh,T (u, ω)) =
ˆ 2π

0
W (nT ) (ω − α) f (u, α) dα+O

(
log (nT )n−1

T

)
=
ˆ 2π

0

∞∑
k=−∞

w (bTk) exp (−i (ω − α) k) f (u, α) dα

+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
=
ˆ 2π

0

∞∑
k=−∞

w (bTk) exp (−i (ω − α) k)
∞∑

s=−∞
exp (−iαs) c (u, s) dα

+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
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=
∞∑

k=−∞
w (bTk) exp (−iωk) c (u, k) dα+O

(
(nT /T )2

)
+O

(
log (nT )n−1

T

)

=
∞∑

k=−∞

ˆ ∞
−∞

W (α) exp (iαbTk) exp (−iωk) c (u, k) dα

+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
=

∞∑
k=−∞

b−1
T

ˆ ∞
−∞

W
(
b−1
T (ω − α)

)
exp

(
−ib−1

T (ω − α) bTk
)

exp (−iωk) c (u, k) dα

+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
=

∞∑
k=−∞

b−1
T

ˆ ∞
−∞

W
(
b−1
T (ω − α)

)
exp (−i (ω − α) k) exp (−iωk) c (u, k) dα

+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
=

∞∑
k=−∞

b−1
T

ˆ ∞
−∞

W
(
b−1
T (ω − α)

)
exp (−iωk) c (u, k) dα

+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
= b−1

T

ˆ ∞
−∞

W
(
b−1
T (ω − α)

)
f (u, ω) dα+O

(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
=
ˆ ∞
−∞

W (α) f (u, ω − bTα) dα+O
(
(nT /T )2

)
+O

(
log (nT )n−1

T

)
.

Thus, E (fh,T (u, ω))→ f (u, ω). Next, from Theorem 3.4,

Cov (fh,T (u, ωj) , fh,T (u, ωk))

=
ˆ 2π

0

ˆ 2π

0
WT (ωj − α)WT (ωk − β) Cov (Ih,T (u, α) , Ih,T (u, β)) dαdβ

= H2,nT (0)−1H2,nT (0)−1
ˆ 2π

0

ˆ 2π

0
WT (ωj − α)WT (ωk − β)

× {|H2,nT (α− β)|2 + |H2,nT (α+ β)|2} |f (u, α)|2 dαdβ +O
(
n−1
T

)
.

We now show that

ˆ 2π

0
WT (ωk − β) |H2,nT (α− β)|2 dβ (S.10)

= 2πWT (ωk − α)
nT−1∑
s=0

h4 (s) +O
(
b−2
T

)
,

uniformly in α. As

H2,nT (ω) =
nT−1∑
s=0

h (s/nT )2 exp (−iωs) ,
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we may write (S.10) as

nT−1∑
t=0

nT−1∑
s=0

h2 (t/nT )h2 (s/nT )
ˆ 2π

0
WT (ωk − β)

× exp {−i (α− β) t+ i (α− β) s} dβ

=
nT−1∑
t=0

nT−1∑
s=0

h2 (t)h2 (s)
ˆ 2π

0

∞∑
k=−∞

w (bTk) exp (−i (ωk − β) k)

× exp {−i (α− β) t+ i (α− β) s} dβ

=
nT−1∑
t=0

nT−1∑
s=0

h2 (t/nT )h2 (s/nT )w (bT (t− s)) exp (i (ωk − α) (t− s))

=
∞∑

k=−∞
w (bTk) exp (i (ωk − α) k)

nT−1∑
s=0

h2 ((s+ k)nT )h2 (s/nT )

= 2πWT (ωk − α)
nT−1∑
s=0

h4 (s/nT ) +RT .

where we have applied Lemma S.A.3 to exp (i (ωk − α) k)
∑nT−1
s=0 h2 (s+ k)h2 (s) to yield,∣∣∣∣∣exp (i (ωk − α) k)

nT−1∑
s=0

h2 (s+ k)h2 (s)− exp (i (ωk − α) k)
nT−1∑
s=0

h4 (s/nT )
∣∣∣∣∣ ≤ C |k| ,

so that for 0 < C <∞,

|RT | ≤ C
∞∑

k=−∞
|w (bTk)| |k| ∼ Hb−2

T

ˆ
|x| |w (x)| dx.

The latter result follows because

C
∞∑

k=−∞
|w (bTk)| |k| = Cb−1

T

∞∑
k=−∞

|w (bTk)| |bTk|

= Cb−2
T bT

∞∑
k=−∞

|w (bTk)| |bTk| = Cb−2
T

ˆ
|x| |w (x)| dx

for a finite 0 < C < ∞. A similar result holds for the second term involving |H2,nT (α+ β)|2. The
covariance being evaluated thus has the form,

Cov (fh,T (u, ωj) , fh,T (u, ωk))

= 2πH2,T (0)−1H2,T (0)−1
nT−1∑
s=0

h (s/nT )4

ˆ 2π

0
{WT (ωj − α)WT (ωk − α) |f (u, α)|2

+WT (ωj − α)WT (ωk − α) |f (u, α)|2}dα+O
(
n−1
T

)
,
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Equation (3.6) follows from

lim
T→∞

nT bTCov (fh,T (u, ωj) , fh,T (u, ωk))

= bTnT 2πn−1
T nTH2,T (0)−1 n−1

T nTH2,T (0)−1 nTn
−1
T

nT−1∑
s=0

h (s/nT )4

ˆ 2π

0
{WT (ωj − α)WT (ωk − α) |f (u, α)|2

+WT (ωj − α)WT (ωk + α) |f (u, α)|2}dα+O
(
(nT bT )−1

)
+O (bT ) ,

= bT 2πnTH2,T (0)−1 nTH2,T (0)−1 n−1
T

nT−1∑
t=0

h (t/nT )4

ˆ 2π

0
{
∞∑

l=−∞
b−1
T

ˆ ∞
−∞

W
(
b−1
T (ωj − α+ 2πl)

)

×
∞∑

l=−∞
b−1
T

ˆ ∞
−∞

W
(
b−1
T (ωk − α+ 2πl)

)
|f (u, α)|2

+
∞∑

l=−∞
b−1
T

ˆ ∞
−∞

W
(
b−1
T (ωj − α+ 2πl)

)

×
∞∑

l=−∞
b−1
T

ˆ ∞
−∞

W
(
b−1
T (ωk + α+ 2πl)

)
|f (u, α)|2}dα+O

(
(nT bT )−1

)
+O (bT )

= 2πnTH2,T (0)−1 nTH2,T (0)−1
ˆ
h4 (t) dt

ˆ 2π

0
{b−1
T

ˆ ∞
−∞

W
(
b−1
T (ωj − α)

)ˆ ∞
−∞

W
(
b−1
T (ωk − α)

)
|f (u, α)|2

+ b−1
T

ˆ ∞
−∞

W
(
b−1
T (ωj − α)

)ˆ ∞
−∞

W
(
b−1
T (ωk + α)

)
|f (u, α)|2}dα

+O
(
(nT bT )−1

)
+O (bT )

= 2π
(ˆ

h2 (t) dt
)−2 ˆ

h4 (t) dt
ˆ 2π

0

[
η {ωj − ωk} |f (u, ωj)|2 + η {ωj + ωk} |f (u, ωj)|2

] ˆ ∞
−∞

W 2 (α) dα

+O
(
(nT bT )−1

)
+O (bT ) .

Finally, we consider the magnitude of the joint cumulants of order L. We have

cum (fh,T (u, ω1) , . . . , fh,T (u, ωL)) (S.11)

= 2π {H2,nT (0)}−L

×
nT−1∑
t1=0
· · ·

nT−1∑
2L=0

w (bT (t1 − t2)) · · ·w (bT (t2L−1 − t2L))

× exp (−iω1 (t1 − t2)− . . .− iωL (t2L−1 − t2L))hnT (t1) · · ·hnT (t2L)
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× cum
(
XbTuc−nT /2+t1+1,TXbTuc−nT /2+t2+1,T , . . . , XbTuc−nT /2+t2L−1+1,TXbTuc−nT /2+t2L+1,T

)
.

Note that

cum
(
XbTuc−nT /2+t1+1,TXbTuc−nT /2+t2+1,T , . . . , XbTuc−nT /2+t2L−1+1,TXbTuc−nT /2+t2L+1,T

)
=
∑

v
|cX···X (u; tj ; j ∈ v1) · · · cX···X (u; tj ; j ∈ vp)| ,

where the summation is over all indecomposable partitions v = (v1, . . . , vp) of the table

1 2
3 4
...

...

2L− 1 2L.

As the partition is indecomposable, in each set vp of the partition we may find an element t∗p, so that none
of tj − t∗p, j ∈ vp, p = 1, . . . , P is t2l−1 − t2l, l = 1, 2, . . . , L. Define 2L − P new variables k1, . . . , k2L−P
as the nonzero tj − t∗p. Since for each vp we get one t∗p we have 2L − P variables. In the case L = 1 we
have t1, t2 and get u = t1 − t2. The cumulant (*) is now bounded by

MLn−LT
∑

v

∑
t∗1

· · ·
∑
t∗P

∑
k1

· · ·
∑
k2L−P

|w
(
bT
(
kα1 + t∗β1 − kα1 − t∗β2

))
· · ·w

(
bT
(
kα2L−1 + t∗β2L−1 − kα2L − t

∗
β2L

))
|h (t∗1/nT )|2L |cX···X (u; k1, . . .) · · · cX···X (u; . . . , k2L−P)| ,

for some finite M where α1, . . . , α2L are selected from 1, . . . , 2L and β1, . . . , β2L from 1, . . . , P. Note
that n−LT comes from the HT ’s in the denominator. Defining φ (tj) = t∗p, j ∈ v1, we apply Lemma
2.3.1 in Brillinger (1975) to see that there are P − 1 linearly independent differences among the tβ∗1 −
tβ∗2 , . . . , tβ∗2L−1

− tβ∗2L . For convenience suppose these are tβ∗1 − tβ∗2 , . . . , tβ∗2P−2
− tβ∗2P−1

. Making a final
change of variables

v1 = uα1 + t∗β1 − uα1 − t∗β2

...

vP−1 = uα2P−3 + t∗β2P−3 − uα2P−2 − t
∗
β2P−2 ,

we see that the cumulant (*) is bounded by

MLn−LT
∑

v

∑
t∗1

∑
v1

· · ·
∑
vP−1

∑
u1

· · ·
∑
u2L−P

|w (bT v1) · · ·w (bT vP−1)|

∣∣∣h(T ) (t∗1)
∣∣∣2L |cX···X (u; k1, . . .) · · · cX···X (u; . . . , k2L−P)| ,

≤MLn−L+1
T b

−(P−1)
T

∑
v
Cn2,1 (u) · · ·Cn2,P (u)

= O
(
n−L+1
T b

−(P−1)
T

)
, as P ≤ L,
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where Cn =
∑
t1,..., tn−1 |cX···X (u; t1, . . . , tn−1)| and n2,j denotes the number of elements in the jth set of

the partition v. We see that the standardized joint cumulant,

cum
{

(nT bT )1/2 fh,T (u, ω1) , . . . , (nT bT )1/2 fh,T (u, ωL)
}
,

for L > 2, tends to 0 as T → ∞. This means that the variates fh,T (u, ω1) , . . . , fh,T (u, ωL) are asymp-
totically normal with the moment structure of the theorem. �

S.A.3 Proof of the Results of Section 4

S.A.3.1 Proof of Theorem 4.1

Without loss of generality, we assume that we observe {Xt} for t ∈ Z. For ω ∈ [−π, π] let Sr+1 (ω) =∑
j∈{{Sr, r=1,..., r+1}} I

∗
h,T (j/T, ω) and

Rr,T (ω) = 1
MS,T

Sr+1 (ω)−
∑

j∈{{Sr, r=1,..., r+1}}
Wj (ω)−

SrmT+mT /2 −
rmT+mT /2∑

j=1
Wj (ω)

 ,
where Wj (ω) = σj (ω)Zj with Zj ∼ i.i.d.N (0, 1). Write

Ĩr,T (ω) = 1
mT

(r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Ih,T (j/T, ω) (S.12)

= 1
mT

(r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

(
I∗h,T (j/T, ω) + E (Ih,T (j/T, ω))

)

= 1
mT

 (r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Wj (ω)

+Rr,T + 1
mT

(r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

E (Ih,T (j/T, ω)) .

Under Assumption 4.1-(i), Theorem 1 in Wu and Zhou (2011) yields max0≤r≤MS,T−1 |Rr,T | = OP (τT /MS,T ).
The same bound holds under Assumption 4.1-(ii) by Corollary 1 in Wu and Zhou (2011). By Theorem
3.3, E (Ih,T (j/T, ω)) = f (j/T, ω) +O((nT /T )2) +O (log (nT ) /nT ). By Assumption 2.1, we have,

f (((r + 1)mT + j) /T, ω)− f ((rmT + j) /T, ω) = O
(
(mT /T )θ

)
, uniformly in r and j. (S.13)

Altogether, we yield

√
mT

(
Ĩr+1,T (ω)− Ĩr,T (ω)

)
= 1
√
mT

 (r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Wj (ω)

−
 rmT+mT /2∑
j=rmT−mT /2+1

Wj (ω)


(S.14)

+O
(
M

1/2
S,Tm

θ
T /T

θ
)

+OP
(
τT /M

1/2
S,T

)
+OP

(
M

1/2
S,T (nT /T )2 +M

1/2
S,T log (nT ) /nT

)
= 1
√
mT

 (r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Wj (ω)

−
 rmT+mT /2∑
j=rmT−mT /2+1

Wj (ω)


+ oP

(
(logMT )−1/2

)
.
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Theorem 4.1 then follows from Lemma 1 in Wu and Zhao (2007). �

S.A.3.2 Proof of Theorem 4.2

Lemma S.A.5. Let V (ω) denote a random variable defined by P (V (ω) ≤ v) = exp(−π−1/2 exp(−v))
for ω ∈ Π. Assume that for ω, ω′ ∈ Π the variables V (ω) and V (ω′) are independent. Let V ∗ ,

maxω∈Π V (ω)− log (nω). Then, P (V ∗ ≤ v) = exp
(
−π−1/2 exp (−v)

)
.

Proof. Since V (ω) is independent from any V (ω′) with ω 6= ω′, we have

logP (V ∗ ≤ v) =
nω∑
j=1

logP (V (ωj) ≤ (log (nω) + v))

=
nω∑
j=1

(
−π−1/2 exp

(
log

(
n−1
ω

))
exp (−v)

)
= −π−1/2 exp (−v) .

Thus, P (V ∗ ≤ v) = exp
(
−π−1/2 exp (−v)

)
. �

Proof of Theorem 4.2. From Theorem 3.4 it follows that Ih,T (u, ωj) and Ih,T (u, ωk) are asymptotically
independent if 2ωj , ωk ± ωk 6≡ 0 (mod 2π), 1 ≤ j < k ≤ nω. The result then follows from Lemma S.A.5.
�

S.A.3.3 Proof of Theorem 4.3

Proof of Theorem 4.3. For ω ∈ [−π, π] let S(r+1)mT (ω) =
∑(r+1)mT
j=1 fh,T (j/T, ω) and Rr,T (ω) be defined

as in the proof of Theorem 4.1. Write

f̃r,T (ω) = 1
mT

(r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

fh,T (j/T, ω) (S.15)

= 1
mT

(r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

(
f∗h,T (j/T, ω) + E (fh,T (j/T, ω))

)

= 1
mT

 (r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Wj (ω)

+Rr,T + 1
mT

(r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

E (fh,T (j/T, ω)) .

As in the proof of Theorem 4.1 max0≤r≤MT−1 |Rr,T | = OP (τT /mT ). By Theorem 3.5, E (fh,T (j/T, ω)) =
f (j/T, ω) + O

(
(nT /T )2

)
+ O

(
b2W,T

)
+ O (log (nT ) /nT ). Note that eq. (S.13) continues to hold. Thus,

we yield

√
mT

(
f̃r+1,T (ω)− f̃r,T (ω)

)
(S.16)

= 1
√
mT

 (r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Wj (ω)

−
 rmT+mT /2∑
j=rmT−mT /2+1

Wj (ω)


+O

(
m
θ+1/2
T /T θ

)
+OP

(
τT /m

1/2
T

)
+OP

(
m

1/2
T (nT /T )2 +m

1/2
T b2W,T +m

1/2
T log (nT ) /nT

)
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= 1
√
mT

 (r+1)mT+mT /2∑
j=(r+1)mT−mT /2+1

Wj (ω)

−
 rmT+mT /2∑
j=rmT−mT /2+1

Wj (ω)


+ oP

(
(logMT )−1/2

)
.

The result then follows from combining Lemma 1 in Wu and Zhao (2007), Lemma S.A.5 and the same
argument as in Theorem 4.2. �

S.A.4 Proofs of the Results in Section 5

For a sequence of random variables {ξj}, let P{ξj} denote the law of the observations {ξj}. Let ||P{ξj} −
P{ξ∗j }||TV define the total variation distance between the probability measures P{ξj} and P{ξ∗j }. For two

random variables Y and X with distributions PY and PX , respectively, denote the Kullback-Leibler
divergence by DKL (Y ||X) = DKL (PY ||PX) =

´
log (dPY /dPX) dPY .

S.A.4.1 Proof of Theorem 5.1

The proof is based on several steps of information-theoretic reductions that allow us to show the asympto-
tic equivalence in the strong Le Cam sense of our statistical problem to a special high-dimensional signal
detection problem. The minimax lower bound is then obtained by using classical arguments as in Ingster
and Suslina (2003). Information-theoretic reductions were also used by Bibinger, Jirak, and Vetter (2017)
to establish a minimax lower bound for change-point testing in volatility in the context of high-frequency
data. Our derivations differ from theirs in several ways because we deal with serially correlated observati-
ons while they had independent observations. Furthermore, our testing problem is more complex because
our observations have an unknown distribution while their observations are squared of standard normal
variables.

Define

dL,h,T (u, ω) ,
nT−1∑
s=0

h

(
s

nT

)
XbTuc−nT+s+1,T exp (−iωs) ,

IL,h,T (u, ω) , 1
2πH2,nT (0) |dL,h,T (u, ω)|2 . (S.17)

Note that the difference between dL,h,T (u, ω) and dh,T (u, ω) as defined in Section 3 is that the former
uses only observations to the left of bTuc. We first consider alternatives as in H1. Throughout the proof
we set

mT = CT

(√
log (MT )T θ/D

) 2
2θ+1

, (S.18)

with a constant CT > 0. We begin by granting the experimenter additional knowledge thereby focu-
sing on a simpler sub-model. This additional knowledge can only decrease the lower bound on minimax
distinguishability and therefore such lower bound carries over to the original model. We restrict at-
tention to a sub-class of F 1,λ0

b
,ω0 (θ, bT , D) which is characterized by a break at time λ0

b ∈ (0, 1) with∣∣f (λ0
b , ω0

)
− f

(
λ0
b+, ω0

)∣∣ ≥ bT , where f
(
λ0
b+, ω

)
= lims↓λ0

b
f (s, ω). We further assume that the break

point is an integer multiple of mT , i.e., Tλ0
bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1}.

In order to simplify the proof, we consider a simplified version of the problem following Bibinger,
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Jirak, and Vetter (2017). We set f− (ω0) = 1 and let

f (j/T, ω0) =
{

1 + (mT − jmodmT )θ T−θ, Tλ0
b < j ≤ Tλ0

b +mT

1, else
. (S.19)

We discuss the general case f− (ω0) 6= 1 at the end of this proof. Eq. (S.19) specifies that the spectrum
at frequency ω0 exhibits a break of order bT at λ0

b and then decays on the interval (λ0
b , λ

0
b + T−1mT ]

smoothly with regularity θ and is constant elsewhere. Name this sub-class F +
λ0
b
,ω0
. Note that here the

location of λ0
b is still unknown. To establish the lower bound, it suffices to focus on the sub-class of the

above form.
Next, we introduce a stepwise approximation to f (j/T, ω0). Define, for a given sequence aT with

aT →∞ and aTm
−1
T = o(1/ log (MT )),

f̃ (j/T, ω0) =
{

1 + (mT − laT )θ T−θ, Tλ0
b + (l − 1) aT < j ≤ Tλ0

b + laT , 1 ≤ l ≤ mT /aT

1 else
.

We are given the observations IL,h,T (j/T, ω) for j = nT + 1, . . . , T and ω ∈ [−π, π]. Assume wit-
hout loss of generality that ω0 6= ±π, ±3π, . . .. By Theorem 3.4-(ii), IL,h,T (j/T, ω0) is approximately
f (j/T, ω0)χ2

2/2 for j/T 6= λ0
b . For j/T = λ0

b , IL,h,T (j/T, ω0) is approximately f (j/T, ω0)χ2
2/2 which

also follows from Theorem 3.4-(ii) since by Assumption 2.1 is continuous from the left at λ0
b . However,

note that IL,h,T (j/T, ω0) is not asymptotically independent of IL,h,T (l/T, ω0) for l = j − nT + 1, . . . , j.
Let SJ = {nT + 1, . . . , T} . Let ζj = f (j/T, ω0)χ2

2/2 and ζ∗j = f (j/T, ω0)χ2
2/2 where ζ∗j are independent

across j ∈ SJ . Define ζ̃∗j = f̃ (j/T, ω0)χ2
2/2 where ζ̃j are independent across j ∈ SJ .

We distinguish between two cases: (i) θ > 1/2 and (ii) θ ≤ 1/2.
(i) Case θ > 1/4. Let us consider the following distinct experiments:
E1 : Observe {ζj}j∈SJ and information Tλ0

bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1} is provided.

E2 : Observe {ζ∗j }j∈SJand information Tλ0
bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1} is provided.

E3 : Observe {ζ̃∗j }j∈SJand information Tλ0
bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1} is provided.

E4 : Observe χ = ((f̃(jmT /T, ω0)χ2
2mT ,j)j∈I1 , (f̃(λ0

b + ((j − 1) aT + 1) /T, ω0)χ̃2
2mT ,j)j∈I2), where

I1 = {1, . . . , λ0
bTm

−1
T , λ0

bTm
−1
T +2, . . . , bT/mT c}, I2 = {1, 2, . . . , mTa

−1
T }, and {χ2

2mT ,j}j∈I1 and {χ̃2
2aT ,j}j∈I2

are i.i.d. sequences of chi-square random variables with 2mT and 2aT degrees of freedom, respectively.
Further, information Tλ0

bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1} is provided.

E5 : Observe ξ = ((m1/2
T ξj f̃(jmT /T, ω0)+ f̃(jmT /T, ω0))j∈I1 , (a1/2

T ξ̃j f̃(λ0
b +((j−1)aT +1)/T, ω0)+

f̃(λ0
b+((j−1)aT+1)/T, ω0))j∈I2), where {ξj}j∈I1 and {ξ̃j}j∈I2 are i.i.d standard normal random variables.

Further, information Tλ0
bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1} is provided.

We assume that {ζj}j∈SJ and {ζ∗j }j∈SJ are realized on the same probability space which is rich
enough to allow for both sequences to be realized there. This is richer then the probability space in which
{ζj}j∈SJ is realized. Thus, the latter probability space is extended in the usual way using product spaces.
The symbol ≈ denotes asymptotic equivalence while ∼ denotes strong Le Cam equivalence. Our proof
consists of showing the following strong Le Cam equivalence of statistical experiments:

E1 ≈ E2 ≈ E3 ∼ E4 ≈ E5. (S.20)

Therefore, given the relation (S.20), the lower bound for E5 carries over to the less informative experiment
E1. We prove (S.20) in steps.

Step 1: E1 ≈ E2. Given ζj = f (j/T, ω0)χ2
2/2 and the boundness of f (·, ·), Theorem 1 in Berkes and

S-18



change-point analysis of evolutionary spectra

Philipp (1979) implies that there exists a sequence {ζ∗j }j∈SJ of independent random variables such that
ζ∗j has the same distribution as ζj and P(|ζj − ζ∗j | ≥ νj) ≤ νj with νj > 0. In view of Assumption 4.1 we
have

∑∞
j=1 νj <∞ which in turn yields,

∞∑
j=1

∣∣∣ζj − ζ∗j ∣∣∣ <∞ P− almost surely. (S.21)

Note that

|SJ |−1 ∑
j∈SJ

∣∣∣ζj − ζ∗j ∣∣∣ = |SJ |−1
J1∑
j=1

∣∣∣ζj − ζ∗j ∣∣∣+ |SJ |−1
T∑

j=J1+1

∣∣∣ζj − ζ∗j ∣∣∣ .
Choose J1 large enough such that

∑T
j=J1+1

∣∣∣ζj − ζ∗j ∣∣∣ = oa.s(|SJ |) . Thus, |SJ |−1∑SJ
j=1

∣∣∣ζj − ζ∗j ∣∣∣ → 0 P-

almost surely. This implies that ||P{|SJ |−1ζj} − P{|SJ |−1ζ∗j }
||TV → 0. The latter shows that E1 ≈ E2.

Step 2: E2 ≈ E3. Note that cχ2
2 with c > 0 is approximately distributed as Γ (1, 2c) where Γ (a, b)

is the Gamma distribution with parameters (a, b). The Kullback-Leibler divergence of Γ (1, 2c) from
Γ (1, 2c̃) is given by

DKL
(
Pc||Pc̃

)
= (log c− log c̃) + c̃− c

c
.

For c = c̃+ δ with δ → 0, we obtain

DKL
(
Pc||Pc̃

)
= log

(
c̃+ δ

c̃

)
+ c̃− (c̃+ δ)

c̃+ δ

= − δ2

2c̃2 +O
(
δ2
)

+O
(
δ3
)
. (S.22)

By Pinsker’s inequality, ∥∥∥∥P{ζ∗j } − P{
ζ̃∗j

}∥∥∥∥2

TV
≤ 1

2DKL

(
Pζ∗j ||Pζ̃∗j

)
.

Thus, using (S.22) and the additivity of Kullback-Leibler divergence for independent distributions, we
have

DKL

(
Pζ∗j ||Pζ̃∗j

)
= C

mT a
−1
T∑

s=1

aT∑
j=1

(
jT−1

)2θ
= CO

(
aTT

−1
)2θ

mT .

This tends to zero in view of (S.18) and m−1
T aT = o(1/ log (MT )).

Step 3: E3 ∼ E4. The vector of averages

((2mT )−1
mT∑
s=1

ζ̃∗jmT+s−1

)
j∈I1

,

(
(2aT )−1

aT∑
s=1

ζ̃∗Tλ0
b
+(j−1)aT+s

)
j∈I2

,
forms a sufficient statistic for

{
f̃ (j/T, ω0)

}
(j/T )∈[0, 1]

. Hence, by Lemma 3.2 of Brown and Low (1996)
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this yields the strong Le Cam equivalence.
Step 4: E4 ≈ E5. Let

χ∗ = (m−1/2
T (f̃(jmT /T, ω0)(χ2

2mT ,j − 2mT ))j∈I1 ,

a
−1/2
T (f̃(λ0

b + ((j − 1)aT + 1)/T, ω0)(χ̃2
2mT ,j − 2aT ))j∈I2)

ξ∗ = ((ξj f̃(jmT /T, ω0))j∈I1 , (ξ̃j f̃(λ0
b + ((j − 1)aT + 1)/T, ω0))j∈I2).

Note that ‖Pχ − Pξ‖2TV = ‖Pχ∗ − Pξ∗‖2TV . By Pinsker’s inequality and independence,

||Pχ∗ − Pξ∗ ||2TV

≤ 2−1DKL (Pχ∗ ||Pξ∗)

≤ 2−1 ∑
j∈I1

DKL
(
m
−1/2
T

(
f̃ (jmT /T, ω0)

(
χ2

2mT ,j − 2mT

))
|| ξj f̃ (jmT /T, ω0)

)
+ 2−1 ∑

j∈I2

DKL(a−1/2
T (f̃(λ0

b + ((j − 1)aT + 1)/T, ω0)(χ2
2aT ,j − 2aT ))

|| ξj f̃(λ0
b + ((j − 1)aT + 1)/T, ω0)).

We now apply Theorem 1.1 in Bobkov, Chistyakov, and Götze (2013) with c1 = 12−1κ2
3 in (1.3) there,

where κ3 is the third-order cumulant of the variable in question. This gives the following bounds,

DKL
(
(4mT )−1/2

(
f̃ (jmT /T, ω0)

(
χ2

2mT ,j − 2mT

))
|| ξj f̃ (jmT /T, ω0)

)
= 1

12

( 8
2mT

)
+ o

( 1
mT logmT

)
,

and

DKL(a−1/2
T (f̃(λ0

b + ((j − 1)aT + 1)/T, ω0)(χ2
2aT ,j − 2aT ))

|| ξj f̃(λ0
b + ((j − 1)aT + 1)/T, ω0)) = 1

12

( 8
2aT

)
+ o

( 1
aT log aT

)
.

Hence, ||Pχ∗ − Pξ∗ ||2TV = O(Tm−2
T ) + O(mTa

−2
T ). Since θ > 1/2 we have Tm−2

T → 0. Finally, since
m−1
T aT → 0 we can choose aT sufficiently fast to yield mTa

−2
T → 0. This shows that ||Pχ − Pξ||TV → 0.

By step 1-4, it is sufficient to establish the minimax lower bound for experiment E5. After adding an
additional drift ξ, which gives an equivalent problem, we cast the problem as a high dimensional location
signal detection problem [cf. Ingster and Suslina (2003)] from which the bound can be derived using
classical arguments. Consider observations

ξ∗ = ((m−1/2
T ξj f̃(jmT /T, ω0) + f̃(jmT /T, ω0)− 1)j∈I1 ,

(a−1/2
T ξ̃j f̃(λ0

b + ((j − 1)aT + 1)/T, ω0) + f̃(λ0
b + ((j − 1)aT + 1)/T, ω0)− 1)j∈I2),

and the hypothesis

H0 : sup
j

(
f̃ (j/T, ω0)− 1

)
= 0 versus H1 : sup

j

(
f̃ (j/T, ω0)− 1

)
≥ bT . (S.23)

The goal is to find the maximal value bT → 0 such that the hypotheses H0 and H1 are non-distinguishable

in the minimax sense or limT→∞ infψ γψ (θ, bT ) = 1. Here the detection rate is bT ∝
(
T−1mT

)θ ∝ T− θ
2θ+1 .
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Consider the product measures PH0 = Pξ∗×P0 and PH1 = Pξ∗×Pλ0
b
,1 where Pξ∗ is the probability law of ξ∗

and P0 is the measure for the no break case. Thus, PH0 is the probability measure under H0 while PH1 is
the probability measure underH1 which draws a break at time λ0

b with Tλ0
bm
−1
T ∈ {1, 2, . . . , bT/mT c − 1}

uniformly from this set. From similar derivations that yield eq. (2.20)-(2.22) in Ingster and Suslina (2003),
it follows that

inf
ψ
γψ (θ, bT ) ≥ 1− 1

2 ‖PH1 − PH0‖TV ≥ 1− 1
2

∣∣∣EPH0

(
L 2

0,1 − 1
)∣∣∣1/2 ,

where L0,1 = dPH1/dPH0 is the likelihood ratio between PH1 and PH0 . By the above inequality, it is
sufficient to show EPH0

(L 2
0,1)→ 1. The proof of the latter result follows similar arguments as in Bibinger,

Jirak, and Vetter (2017).
It remains to consider the case θ ≤ 1/2. In a different setting, Bibinger, Jirak, and Vetter (2017)

considered separately the case where their regularity exponent a ≤ 1/2 to obtain the minimax lower
bound. The same arguments can be applied in our context which lead to the same result as for the case
θ > 1/2.

The general case with f− (ω0) > 0 rather than with f− (ω0) = 1 as discussed above follows from the
same arguments after we rescale the equations in (S.23). The only difference is the form of the detection
rate which is now bT ≤ f−(ω0)D(T−1mT )θ.

The proof for the lower bound for the alternative H′1 is similar to the proof discussed above. The
minor differences in the proof outlined by Bibinger, Jirak, and Vetter (2017) also apply here. �

S.A.4.2 Proof of Theorem 5.2

We present the proof for the statistic maxω∈Π Imax,T (ω) constructed with IL,h,T (j/T, ω) in place of
Ih,T (j/T, ω). The proof for the other test statistics discussed in Section 4 is similar and omitted. Without

loss of generality we assume that ω0 6= ±π. Let ĨL,r,T (ω) be defined as Ĩr,T (ω) but with IL,h,T (j/T, ω)
in place of Ih,T (j/T, ω). Let Ĩ∗L,r,T (ω) be defined as Ĩ∗r,T (ω) but with I∗L,T (r/T, ω) = IL,h,T (j/T, ω) −
E (IL,h,T (j/T, ω)) in place of I∗T (r/T, ω) .As in (S.12)-(S.13), if Tλ0

b /∈ [rm∗T −m∗T /2 + 1, (r + 1)m∗T +m∗T /2]
or if ω 6= ω0 then∣∣∣∣ ĨL,r+1,T (ω)− ĨL,r,T (ω)

σr (ω)

∣∣∣∣
=

∣∣∣∣∣∣∣
(m∗T )−1∑(r+1)m∗T+m∗T /2

j=(r+1)m∗T−m
∗
T /2+1

(
I∗L,T (j/T, ω) + E (IL,h,T (j/T, ω))

)
σr (ω)

−
(m∗T )−1∑rm∗T+m∗T /2

j=rm∗T−m
∗
T /2+1

(
I∗L,T (j/T, ω) + E (IL,h,T (j/T, ω))

)
σr (ω)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(m∗T )−1∑(r+1)m∗T+m∗T /2

j=(r+1)m∗T−m
∗
T /2+1 I

∗
L,T (j/T, ω)− (m∗T )−1∑rm∗T+m∗T /2

j=rm∗T−m
∗
T /2+1 I

∗
L,T (j/T, ω)

σr (ω)

∣∣∣∣∣∣∣
+O

(
(m∗T /T )θ

)
+OP

(
(nT /T )2 + log (nT ) /nT

)
, I̊r,T (ω) +O

(
(m∗T /T )θ

)
+OP

(
(nT /T )2 + log (nT ) /nT

)
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= I̊r,T (ω) +OP

((√
log (M∗T ) (m∗T )1/2

)−1
)
.

If Tλ0
b ∈ [rm∗T −m∗T /2 + 1, (r + 1)m∗T +m∗T /2] and ω = ω0,

1√
m∗T

vm∗T+m∗T /2∑
j=vm∗T−m

∗
T /2+1

I∗L,T (j/T, ω0) = OP (1) , v = r, r + 1.

Hence, we yield that
√
m∗T I̊r,T (ω) = OP (1) for 1 ≤ r ≤M∗T − 2. This can be used to obtain the following

inequality, for rm∗T −m∗T /2 + 1 ≤ Tλ0
b ≤ rm∗T +m∗T /2

Imax,T (ω0) ≥ −I̊r,T (ω0)

+ 1
m∗T

∣∣∣∣∣
ˆ λ0

b

(rm∗T−m∗T /2+1)/T
f (u, ω0) du−

ˆ (r+1)m∗T+m∗T /2

λ0
b

f (u, ω0) du
∣∣∣∣∣ (1− oP (1))

supr σr (ω0) ,

≥ −OP
(
(m∗T )−1/2

)
(S.24)

+ 1
m∗T

∣∣∣∣∣
ˆ λ0

b

(rm∗T−m∗T /2+1)/T
f (u, ω0) du−

ˆ (r+1)m∗T+m∗T /2

λ0
b

f (u, ω0) du
∣∣∣∣∣ (1− oP (1))

supr σr (ω0) .

In order to prove γψ∗ (θ, b∗T )→ 0, it suffices to show that

P
(

Imax,T (ω) < 2D∗
√

log (M∗T ) /m∗T
)
→ 1, ∀ω ∈ [−π, π] underH0 (S.25)

P
(

Imax,T (ω) ≥ 2D∗
√

log (M∗T ) /m∗T
)
→ 1, for someω ∈ [−π, π] , underH1 orH′1, (S.26)

We first show (S.25). Note that

2D∗
√

log (M∗T ) /m∗T ≥ 2
√

log (M∗T ) /m∗T +D (m∗T /T )θ .

Under H0, since θ′ < θ we have

Imax,T (ω0) ≤ max
1≤r≤M∗T−2

I̊r,T (ω0) +D (m∗T /T )θ
′
+OP

(
(nT /T )2 + log (nT ) /nT

)
.

Since (nT /T )2 + log (nT ) /nT ≤ 2D∗
√

log (M∗T ) /m∗T , to conclude the proof we have to show

P
(

max
1≤r≤M∗T−2

I̊r,T (ω0) ≤
√

log (M∗T ) /m∗T

)
→ 1.

The latter result follows from Theorem 4.1.
We now prove (S.25) underH1. We have to show that the second term on the right hand side of (S.24)

is greater than or equal to 2D∗
√

log (M∗T ) /m∗T . The term in question is larger than b∗T − 2D (m∗T /T )θ . In

view of (5.2) with θ′ = 0 the result follows.
We now prove S.25 under H′1. For h ≤ 2m∗T /T we have f

(
λ0
b + h, ω0

)
≥ f

(
λ0
b , ω0

)
+ b∗Th

θ′ or
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f
(
λ0
b + h, ω0

)
≤ f

(
λ0
b , ω0

)
− b∗Thθ

′
. Thus,

1
m∗T

∣∣∣∣∣
ˆ λ0

b+2(n∗T /T+m∗T /T)

λ0
b
+n∗T /T+m∗T /T

f (u, ω0) du
∣∣∣∣∣ ≥ bT (m∗T /T )θ

′

≥ 2D∗
√

log (M∗T ) /m∗T ,

where the second equality follows from (5.2). �

S.A.5 Proofs of the Results of Section 6

S.A.5.1 Proof of Proposition 6.1

The following lemma is simple to verify. It was also used by Bibinger, Jirak, and Vetter (2017) in a
different context.

Lemma S.A.6. Let C (u) and d (u) be functions on
[
0, λ0

b

]
such that d (u) is increasing. As long as

d
(
λ0
b

)
− d

(
λ0
b − κ

)
≥ sup0≤u≤λ0

b
|C (u)| for some κ ∈

[
0, λ0

b

]
we have that,

argmax
0≤u≤λ0

b

(d (u) + C (u)) ≥ λ0
b − κ. (S.27)

An analogous results holds if C (u) and d (u) are functions on
[
λ0
b , 1

]
and d (u) is decreasing.

Proof of Proposition 6.1. For λ0
b ∈ (0, 1) define rb =

⌈
Tλ0

b + 1
⌉
, i.e., the smallest integer such that rb/T

is larger or equal than λ0
b + 1/T . Denote by

{
f̃ (u, ω0)

}
u∈[0, 1]

the path of the spectrum f (·, ω0) without

the break: f (r/T, ω) = f̃ (r/T, ω) + δT1 {r ≥ rb} . Without loss of generality, we assume δT > 0. Define
d (r/T, ω) = 0 for ω 6= ω0 and

d (r/T, ω0) =


0 if r +mT < rb,

(r +mT − rb)m
−1/2
T δT if r = rb −mT , . . . ,

m
1/2
T δT if r > rb,

rb,

and {d (u, ω0)}u∈[0, 1] is the associated piecewise constant increasing step function. For r = mT , . . . , T −
mT , write

r∑
j=r−mT+1

IT (j/T, ω0)−
r+mT∑
j=r+1

IT (j/T, ω0)

=
r∑

j=r−mT+1
(IT (j/T, ω0)− E (IT (j/T, ω0)))−

r+mT∑
j=r+1

(IT (j/T, ω0)− E (IT (j/T, ω0)))

+
r∑

j=r−mT+1

(
E (IT (j/T, ω0))− f̃ (j/T, ω0)

)
−

r+mT∑
j=r+1

(E (IT (j/T, ω0)− f (j/T, ω0)))

+
r∑

j=r−mT+1
f̃ (j/T, ω0)−

r+mT∑
j=r+1

f̃ (j/T, ω0)−
r+mT∑
j=r+1

(
f (j/T, ω0)− f̃ (j/T, ω0)

)
.
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For r = mT , . . . , rb, let C (r/T, ω) = Dr,T (ω) for ω 6= ω0 and

C (r/T, ω0) = m
−1/2
T

 r∑
j=r−mT+1

IT (j/T, ω0)−
r+mT∑
j=r+1

IT (j/T, ω0)

+
r+mT∑
j=rb+1

(
f (j/T, ω0)− f̃ (j/T, ω0)

) .
Note that C (s/T, ω) does not involve any break for any ω. Thus, we can proceed similarly as in the proofs
of Section 4. That is, we exploit the smoothness of f (·, ·) as underH0 to yield supu∈[0, λ0

b] supω∈[−π, π] |C (u, ω)| =

OP
(√

log (T )
)
. This combined with the definition of d (r/T, ω0) implies

|d (r/T, ω0)| > max
ω∈[−π, π]

(|d (r/T, ω)|) > 0,

with probability approaching one and

Dr,T (ω) = |d (r/T, ω) + C (r/T, ω)| = d (r/T, ω) + sign (C (r/T, ω)) |C (r/T, ω)| ,

for each r = rb − bmT /Bc , . . . , rb where B is any finite integer with B > 1. By definition of d (·, ω0) , for
κT ∈ [0, mT / (BT )],

d (rb/T, ω0)− d (rb/T − κT , ω0) = bκTT c δTm−1/2
T .

In order to apply Lemma S.A.6, we need to choose κT such that bκTT c δTm−1/2
T /

√
log (T ) ≥ 1 or√

mT log (T )/δTT = o (κT ) . Lemma S.A.6 then yields

rb
T
≥ argmax
r=mT ,..., rb

max
ω∈[−π, π]

T−1Dr,T (ω) = argmax
r=mT ,..., rb

T−1Dr,T (ω0) ≥ rb
T
− κT .

The case r > rb can be treated similarly by symmetry. It results in

rb
T
≤ argmax
r=rb,..., T−mT

max
ω∈[−π, π]

T−1Dr,T (ω) = argmax
r=rb,..., T−mT

T−1Dr,T (ω0) ≤ rb
T

+ κT .

Therefore, we conclude
∣∣∣λ̂b − rb/T ∣∣∣ = OP (κT )→ 0. �

S.A.5.2 Proof of Proposition 6.2

Set Î = {mT , . . . , T −mT } \ {mT } and T̂ = ∅. Under H1,M, the arguments in the proof of Theorem 4.1
yields,

argmax
r=mT ,..., T−mT

max
ω 6=ω0

Dr,T (ω) = OP

(√
log (T )

)
.

Let rl, rl+1 ∈ Î such that rl+1 = rl +mT and rl ≤ T 0
l < rl+1, l = 1, . . . , m0. For ω = ω0 we have

argmax
r∈Î\{r1,..., rm+1}

Dr,T (ω0) = OP

(√
log (T )

)
.
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For each r ∈ Î, we draw K points r�k,r with k = 1, . . . , K uniformly (without replacement) from I (r).
Consider the following events,

D1 =
{
∀r ∈ Î ∀ k = 1, . . . , K, (∃! 1 ≤ l ≤ m0) ∨ (@ 1 ≤ l ≤ m0) s.t. T 0

l ∈
[
r�k,r −mT , r

�
k,r +mT

]}
D2 =

{
∀l = 1, . . . , m0 ∃ r ∈ Î s.t. ∃ k = 1, . . . , K, s.t.

∣∣∣T 0
l − r�k,r

∣∣∣ = CmT for someC ∈ [0, 1)
}
.

Let Ac denote the complement of a set A. Note that P ((D1 ∩D2)c) = P ((D2)c) by Assumption 6.2 and
that P ((D2)c) = 0 if there are still undetected breaks. The remaining arguments will be valid on the set
D1 ∩D2 as long as there are undetected breaks.

Let rl, rl+1 ∈ Î be such that T 0
l ∈ [rl, rl+1). As in the proof of Proposition 6.1,

Drl,T (ω0) = |OP
(
m
−1/2
T δl,T

(
mT −

(
rl − T 0

l

)
1
{
rl−1 < T 0

l ≤ rl
}

+
(
rl+1 − T 0

l

)
1
{
rl < T 0

l < rl+1
}))
|.

Note that if Drl,T (ω0) /
(
δl,T
√
mT

) P→ 0 then we must have Drl+1,T (ω0) = OP
(
δl,T
√
mT

)
. Thus, in step

(2) ψ∗
(
{Xr}r∈Î

)
= 1 because for large enough T ,

max
r∈Î

max
k∈K

Dr�
k,r
,T (ω0) ≥ max

r∈Î
Dr,T (ω0)

= |δl,TOP (
√
mT )|

≥ inf
1≤l≤m0

|δl,TOP (
√
mT )|

= 2D∗ (log (T ))2/3

> 2D∗
√

log (M∗T ),

where the last inequality follows from Assumption 6.2. We now move to step (3). By the arguments in

the proof of Proposition 6.1, there exists 1 ≤ l ≤ m0 such that
∣∣∣λ0
l − λ̂T

(
Î
)∣∣∣ ≤ mT /T . Since mT /vT → 0

there can exist exactly one l that satisfies
∣∣∣λ0
l − λ̂T

(
Î
)∣∣∣ ≤ mT /T . For such a λ0

l define rl,b =
⌈
Tλ0

l + 1
⌉
,

the smallest integer such that rl,b/T is larger or equal than λ0
l + 1/T . Denote by

{
f̃ (u, ω)

}
u∈[0, 1]

the

path of the spectrum f (·, ω) without the break δl,T :

f (r/T, ω) = f̃ (r/T, ω) + δl,T1 {r ≥ rl,b} .

Without loss of generality, we assume δl,T > 0. Define d (r/T, ω) = 0 for ω 6= ω0 and

dl (r/T, ω0) =


0 if r +mT < rl,b

(r +mT − rl,b)m
−1/2
T δl,T if r = rl,b −mT , . . . ,

m
1/2
T δl,T if r > rl,b

sl,b.

Let {d (u)}u∈[0, 1] is the associated piecewise constant increasing step function. For any r ∈ Î, write

r∑
j=r−mT+1

IT (j/T, ω0)−
r+mT∑
j=r+1

IT (j/T, ω0)
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=
r∑

j=r−mT+1
(IT (j/T, ω0)− E (IT (j/T, ω0)))−

r+mT∑
j=r+1

(IT (j/T, ω0)− E (IT (j/T, ω0)))

+
r∑

j=r−mT+1

(
E (IT (j/T, ω0))− f̃ (j/T, ω0)

)
−

r+mT∑
j=r+1

(E (IT (j/T, ω0)− f (j/T, ω0)))

+
r∑

j=r−mT+1
f̃ (j/T, ω0)−

r+mT∑
j=r+1

f̃ (j/T, ω0)−
r+mT∑
j=r+1

(
f (j/T, ω0)− f̃ (j/T, ω0)

)
.

For r = mT , . . . , rb, let Cl (r/T, ω) = Dr,T (ω) for ω 6= ω0 and

Cl (r/T, ω0) = m
−1/2
T

 r∑
j=r−mT+1

IT (j/T, ω0)−
r+mT∑
j=r+1

IT (j/T, ω0)

+
r+mT∑
j=rl,b+1

(
f (j/T, ω0)− f̃ (j/T, ω0)

) ,
We proceed as in the proof of Proposition 6.1. We have d (r/T, ω0) ≥ maxω∈[−π, π] |d (r/T, ω)| > 0 with
probability approaching one . Exploiting the smoothness on (λ0

l−1, λ
0
l ], we have

sup
u∈(λ0

l−1, λ
0
b
]

sup
ω∈[−π, π]

|Cl (u, ω)| = OP

(√
log (T )

)
.

This implies

Dr,T (ω) = |dl (r/T, ω) + Cl (r/T, ω)| = dl (r/T, ω) + sign (Cl (r/T, ω)) |Cl (r/T, ω)| ,

for each r = rb − bmT /Bc , . . . , rb where B is any integer with 1 < B <∞. By definition of dl (·, ω0) , for
κT ∈ [0, mT / (BT )] we have

dl (rl,b/T, ω0)− dl (rl,b/T − κT , ω0) = bκTT c δl,Tm
−1/2
T .

In order to apply Lemma S.A.6, we need to choose κT such that bκTT c δl,Tm
−1/2
T /

√
log (T ) ≥ 1 or√

mT log (T )/δl,TT = o (κT ) . Lemma S.A.6 then yields

rl,b
T
≥ argmax
r∈
(
Î\{r: r>rl,b}

) max
ω∈[−π, π]

T−1Dr,T (ω) = argmax
r∈
(
Î\{r: r>rl,b}

)T−1Dr,T (ω0) ≥ rl,b
T
− κT .

The case r > rb can be treated similarly by symmetry. It results in

rl,b
T
≤ argmax
r∈
(
Î\{r: r<rl,b}

) max
ω∈[−π, π]

T−1Dr,T (ω) = argmax
r∈
(
Î\{r: r<rl,b}

)T−1Dr,T (ω0) ≤ rl,b
T

+ κT .

Therefore, we conclude
∣∣∣λ̂T − rl,b/T ∣∣∣ = OP (κT )→ 0. Now set Î = Î\

{
T λ̂T

(
Î
)
− vT , . . . , T λ̂T

(
Î
)

+ vT
}

and T̂ = T̂ ∪
{
T λ̂T

(
Î
)}

. Since P ((D2)c) = 0 if there are still undetected breaks, we can repeat the

above steps (1)-(4). The final results are P
(∣∣∣T̂ ∣∣∣ = m0

)
→ 1 and, after ordering the elements of T̂ in
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chronological order, sup1≤l≤m0

∣∣∣λ̂l,T − λ0
l

∣∣∣ = OP
(√

mT log (T )/ (T inf1≤l≤m0 δl,T )
)
.

Assume without loss of generality that δ1,T ≥ δ2,T ≥ · · · ≥ δm0,T . Let λ̂
(q)
T (q = 1, . . . , m0) de-

note the qth break detected by the procedure. It remains to prove that if K → ∞ then λ̂
(q)
T is

consistent for λ0
q (q = 1, . . . , m0). Consider the first break λ0

1. In order for the algorithm to return

λ̂
(1)
T such that

∣∣∣λ̂(q)
T − λ0

1

∣∣∣ P→ 0 we need the following event to occur with sufficiently high probability,

W =
{

For l = 1∃r ∈ Î and k = 1, . . . , K s.t. r�r,k = T 0
l

}
. Note that

Wc =
{
T 0

1 not sample inK draws fromT 0
1 −mT + 1, . . . , T 0

1 without replacement
}
.

Thus,

1− P (Wc) = 1− mT − 1
mT

× mT − 2
mT − 1 × · · · ×

mT −K
mT −K + 1

= 1− mT −K
mT

→ 0,

only if K = O (aTmT ) with aT ∈ (0, 1], such that aT → 1. Note that K ≤ mT by construction. The same
argument applies for l = 2, . . . , m0. �
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