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A Mathematical Appendix

The supplement is structured as follows. In Section A.1 we present some preliminary lemmas. The proof

of the results of Section 4 can be found in Section A.2 while those about inference are in Section A.3.

A.1 Additional Notation and Preliminary Results

We denote the (i, j)-th element of the outer product matrix A′A by (A′A)i,j and the i × j upper-left

(resp., lower-right) sub-block of A′A by [A′A]{i×j,·} (resp., [A]{·,i×j}). For a random variable ξ and a

number r ≥ 1, we write ‖ξ‖r = (E ‖ξ‖r)1/r . C is used as a generic constant that may vary from line to

line; we may sometime write Cr to emphasize the dependence of C on some number r. For two scalars a

and b the symbol a ∧ b means the infimum of {a, b}. The symbol “
u.c.p.⇒ ” signifies uniform locally in time

convergence under the Skorokhod topology, which implies convergence in probability.

It is typical in the high frequency statistics literature to use a localization argument [cf. Section I.1.d

in Jacod and Shiryaev (2003)] which allows us to replace Assumption 2.1-2.2 by the following stronger

assumption which basically turns all the local conditions into global ones.

Assumption A.1. Under Assumption 2.1-2.6, {Yt, Dt, Zt}t≥0 takes value in some compact set, {σ·,t, σe,t}t≥0
is bounded càdlàg and {µ·,t} are bounded càdlàg or càglàd.

Next, we collect a few lemmas. They follow from Lemma S.A.1-S.A.4 in CP (2020a).

Lemma A.1. The following inequalities hold P-a.s.:(
Z ′0MZ0

)
−
(
Z ′0MZ2

) (
Z ′2MZ2

)−1 (
Z ′2MZ0

)
≥ H ′

(
X ′∆X∆

) (
X ′2X2

)−1 (
X ′0X0

)
H, Tb < T 0

b (A.1)(
Z ′0MZ0

)
−
(
Z ′0MZ2

) (
Z ′2MZ2

)−1 (
Z ′2MZ0

)
≥ H ′

(
X ′∆X∆

) (
X ′X −X ′2X2

)−1 (
X ′X −X ′0X0

)
H, Tb ≥ T 0

b

(A.2)

Lemma A.2. Let Xt

(
X̃t

)
be a q-dimensional (resp. p-dimensional) Itô continuous semimartingale

defined on [0, N ]. Let Σt denote the date t instantaneous covariation between Xt and X̃t. Choose a fixed

number ε > 0 and $ satisfying 1/2− ε ≥ $ ≥ ε > 0. Further, let BT , bN/h− T$c . Define the moving

average of Σt as Σkh , (T$h)−1 ´ kh+T$h
kh Σsds, and let Σ̂kh , (T$h)−1∑bT$c

i=1 ∆hXk+i∆hX̃
′
k+i. Then,

sup1≤k≤BT ||Σ̂kh − Σkh|| = oP (1) .

Lemma A.3. Under Assumption A.1 we have as h ↓ 0, T →∞ with N fixed and for any 1 ≤ i, j ≤ p, (i)∣∣∣(Z ′2e)i,1 =
∑T
k=Tb+1 z

(i)
khekh

∣∣∣ P→ 0; (ii)
∣∣∣(Z ′0e)i,1 =

∑T
k=T 0

b
+1 z

(i)
khekh

∣∣∣ P→ 0; (iii)
∣∣∣(Z ′2Z2)i,j −

´ N
(Tb+1)h Σ(i,j)

ZZ,sds
∣∣∣ P→

0 where (Z ′2Z2)i,j =
∑T
k=Tb+1 z

(i)
khz

(j)
kh ; (iv)

∣∣∣∣(Z ′0Z0)i,j −
´ N
(T 0
b

+1)h Σ(i,j)
ZZ,sds

P→
∣∣∣∣ 0 with (Z ′0Z0)i,j =

∑T
k=T 0

b
+1 z

(i)
khz

(j)
kh .

For the following estimates involving X, we have, for any 1 ≤ r ≤ p and 1 ≤ l ≤ q + p, (v)
∣∣∣(Xe)l,1∣∣∣ P→ 0

where (Xe)l,1 =
∑T
k=1 x

(l)
khekh; (vi)

∣∣∣(Z ′2X)r,l −
´ N

(Tb+1)h Σ(r,l)
ZX,sds

∣∣∣ P→ 0 where (Z ′2X)r,l =
∑T
k=Tb+1 z

(r)
kh x

(l)
kh;

(vii)

∣∣∣∣(Z ′0X)r,l −
´ N
(T 0
b

+1)h Σ(r,l)
ZX,sds

∣∣∣∣ P→ 0 where (Z ′0X)r,l =
∑T
k=T 0

b
+1 z

(r)
kh x

(l)
kh. Further, for 1 ≤ u, d ≤ q+p,

(viii)
∣∣∣(X ′X)u,d −

´ N
0 Σ(u,d)

XX,sds
∣∣∣ P→ 0 where (X ′X)u,d =

∑T
k=1 x

(u)
kh x

(d)
kh .

Denote

X∆ , X2 −X0 =
(
0, . . . , 0, x(Tb+1)h, . . . , xT 0

b
h, 0, . . . ,

)′
, for Nb < N0

b

X∆ , − (X2 −X0) =
(
0, . . . , 0, x(T 0

b
+1)h, . . . , xTbh, 0, . . . ,

)′
, for Nb > N0

b
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whereas X∆ , 0 for Nb = N0
b . Observe that X2 = X0 +X∆sign

(
N0
b −Nb

)
. When the sign is immaterial,

we simply write X2 = X0 +X∆.

Lemma A.4. Under Assumption A.1, we have as h ↓ 0, T → ∞ with N fixed,
∣∣N0

b −Nb

∣∣ > γ > 0 and

for any 1 ≤ i, j ≤ p,

(i) with (Z ′∆Z∆)i,j =
∑Tb
k=T 0

b
+1 z

(i)
khz

(j)
kh then

| (Z
′
∆Z∆)i,j −

´ T 0
b h

(Tb+1)h Σ(i,j)
ZZ,sds|

P→ 0, if Tb < T 0
b

| (Z ′∆Z∆)i,j −
´ (Tb+1)h
T 0
b
h

Σ(i,j)
ZZ,sds|

P→ 0, if Tb > T 0
b

;

and for 1 ≤ r ≤ p+ q

(ii) with (Z ′∆X∆)i,r =
∑Tb
k=T 0

b
+1 z

(i)
khx

(r)
kh then

| (Z
′
∆X∆)i,r −

´ T 0
b h

(Tb+1)h Σ(i,r)
ZX,sds|

P→ 0, if Tb < T 0
b

| (Z ′∆X∆)i,r −
´ (Tb+1)h
T 0
b
h

Σ(i,r)
ZX,sds|

P→ 0, if Tb > T 0
b

.

Moreover, each quantity on the right hand side above are bounded in probability.

We will also use the following Central Limit Theorem [see Theorem 5.4.2. in Jacod and Protter

(2012)]. We choose a progressively measurable “square-root” process ΥZ of the M+
q2-valued process Σ̂Z,s

whose elements are given by Σ̂(ij,kl)
Z,s = Σ(ik)

Z,s Σ(jl)
Z,s . Note that by the symmetry of ΣZ,s, the matrix with

entries (Υ(ij,kl)
Z,s + Υ(ji,kl)

Z,s )/
√

2 is a square-root of the matrix with entries Σ̂(ij,kl)
Z,s + Σ̂(il,jk)

Z,s . Let W ∗s a q2-

dimensional standard Wiener process defined on an extension of (Ω, F , {Ft} , P). Then the process Ut
with components U (rj)

t = 2−1/2∑q
k,l=1

´ t
0 (Υ(rj,kl)

Z,s + Υ(jr,kl)
Z,s )dW ∗(kl)s is, conditionally on F , a continuous

Gaussian process with independent increments and (conditional) covariance Ẽ(U (rj) (v)U (kl) (v) |F ) =´ N0
b

N0
b

+v(Σ
(rk)
Z,s Σ(jl)

Z,s + Σ(rl)
Z,sΣ(jk)

Z,s )ds, with v < 0. The Central Limit Theorem we shall use is the following [cf.

Lemma S.A.5 in CP (2020a)].

Lemma A.5. Let Z be a continuous Itô semimartingale satisfying Assumption A.1. Then, h−1/2(Z ′2Z2

−([Z, Z]Th − [Z, Z](Tb+1)h)) L−s⇒ U .

Recall Qh(δ̂(Nb), Nb) = δ̂(Nb)′(Z ′2MZ2)δ̂(Nb). We decompose Qh(δ̂(Nb), Nb)−Qh(δ̂
(
N0
b

)
, N0

b ) into

a “deterministic” and a “stochastic” component. By definition,

δ̂ (Nb) =
(
Z ′2MZ2

)−1 (
Z ′2MY

)
=
(
Z ′2MZ2

)−1 (
Z ′2MZ0

)
δ0 +

(
Z ′2MZ2

)−1
Z2Me,

and δ̂
(
N0
b

)
= (Z ′0MZ0)−1 (Z ′0MY ) = δ0 + (Z ′0MZ0)−1 (Z ′0Me) . Therefore,

Qh
(
δ̂ (Nb) , Nb

)
−Qh

(
δ̂
(
N0
b

)
, N0

b

)
= δ̂ (Nb)

(
Z ′2MZ2

)
δ̂ (Nb)− δ̂

(
N0
b

)′ (
Z ′0MZ0

)
δ̂
(
N0
b

)
, Dh

(
δ0, Nb

)
+ Se,h

(
δ0, Nb

)
, (A.3)

where

Dh

(
δ0, Nb

)
,
(
δ0
)′ {(

Z ′0MZ2
) (
Z ′2MZ2

)−1 (
Z ′2MZ0

)
− Z ′0MZ0

}
δ0 (A.4)

is the deterministic part and

Se,h
(
δ0, Nb

)
, 2

(
δ0
)′ (

Z ′0MZ2
) (
Z ′2MZ2

)−1
Z2Me− 2

(
δ0
)′ (

Z ′0Me
)

(A.5)

+ e′MZ2
(
Z ′2MZ2

)−1
Z2Me− e′MZ0

(
Z ′0MZ0

)−1
Z ′0Me (A.6)

is the stochastic part. Next, let Z∆ = X∆H, and define

Dh

(
δ0, Nb

)
, −Dh

(
δ0, Nb

)
/
∣∣∣Tb − T 0

b

∣∣∣ . (A.7)
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We arbitrarily define Dh

(
δ0, Nb

)
=
(
δ0)′ δ0 when Nb = N0

b since both the numerator and denominator of

Dh

(
δ0, Nb

)
are zero. Observe that Dh

(
δ0, Nb

)
is non-negative because the matrix inside the braces in

Dh

(
δ0, Nb

)
is negative semidefinite. Equation (A.3) can be rewritten as

Qh (δ (Nb) , Nb)−Qh
(
δ
(
N0
b

)
, N0

b

)
= −

∣∣∣Tb − T 0
b

∣∣∣Dh

(
Nb, δ

0
)

+ Se,h
(
Nb, δ

0
)

for all Tb. (A.8)

Lemma A.6. Under Assumption 2.2-2.6 and 3.1, uniformly in Nb,

Qh (δ (Nb) , Nb)−Qh
(
δ
(
N0
b

)
, N0

b

)
= −δh

(
Z ′∆Z∆

)
δh + 2δ′h

(
Z ′∆ẽ

)
sgn

(
T 0
b − Tb

)
+ oP

(
h3/2−κ

)
. (A.9)

Proof. It follows from Lemma 4.1 in CP (2020a). �

Lemma A.7. For any ε > 0 there exists a C > 0 such that

lim inf
h↓0

P
[

sup
K≤|u|≤ηT 1−κ

Qh
(
N0
b + u/rh

)
−Qh

(
N0
b

)
< −C

]
≥ 1− ε,

for some large K and small η > 0.

Proof. Note that on
{
K ≤ |u| ≤ ηT 1−κ} we have KT κ ≤

∣∣Tb − T 0
b

∣∣ < ηT . Suppose Nb < N0
b . Let

TK,η = {Tb : Nη >
∣∣Nb −N0

b

∣∣ > K
(
T 1−κ)−1}. It is enough to show that

P
(

sup
Tb∈TK,η

Qh
(
N0
b + u/rh

)
−Qh

(
N0
b

)
≥ 0

)
< ε,

or using (A.8), P
(
supTb∈TK,η

h−3/2Se,h (δh, Nb) /
∣∣Tb − T 0

b

∣∣ ≥ infTb∈TK,η
h−3/2Dh (δh, Nb)

)
< ε. The diffi-

culty is to control the estimates that depend on the difference
∣∣Nb −N0

b

∣∣. By Lemma A.1,

inf
Tb∈TK,η

Dh (δh, Nb) ≥ inf
Tb∈TK,η

δ′hH
′
(
X ′∆X∆/

∣∣∣Tb − T 0
b

∣∣∣) (X ′2X2
)−1 (

X ′0X0
)
Hδh,

and, since Tη >
∣∣Tb − T 0

b

∣∣ ≥ KT κ/N, we need to study the behavior of X ′∆X∆ =
∑T 0

b
k=Tb+1 xkhx

′
kh.

We shall apply asymptotic results for the local approximation of the covariation between processes. By

Theorem 9.3.2 part (i) in Jacod and Protter (2012),

(
h
(
T 0
b − Tb

))−1
T 0
b∑

k=Tb+1
xkhx

′
kh

P→ ΣXX,N0
b
, (A.10)

since
∣∣Nb −N0

b

∣∣ shrinks at a rate no faster than h1−κ and
(
1/h1−κ) → ∞. Since X ′0X0 and X ′2X2 both

involve at least a fixed positive fraction of the data, we can apply a simple law of large numbers for

approximate covariation processes [cf. Lemma A.3] to show that X ′0X0 and X ′2X2 are each OP (1). By

Lemma A.2, the approximation in (A.10) is uniform, and thus

h−1/2 inf
Tb∈TK,η

δ′hH
′
(
X ′∆X∆/h

∣∣∣Tb − T 0
b

∣∣∣) (X ′2X2
)−1 (

X ′0X0
)
Hδh

= inf
Tb∈TK,η

(
δ0
)′
H ′
(
X ′∆X∆/h

∣∣∣Tb − T 0
b

∣∣∣) (X ′2X2
)−1 (

X ′0X0
)
Hδ0

is bounded away from zero, in view of Assumption 2.2-(iii). It remains to show that

P
(

sup
Tb∈TK,η

h−3/2Se,h (δh, Nb) /
(
T 0
b − Tb

)
≥ C2

)
< ε, (A.11)
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for any C2 > 0. Consider the terms of Se,h (δh, Nb) in (A.5). Using Z2 = Z0 ± Z∆, the first term can be

expanded as

δ′h
(
Z ′0MZ2

) (
Z ′2MZ2

)−1
Z2Me = δ′h

((
Z ′2 ± Z∆

)
MZ2

) (
Z ′2MZ2

)−1
Z2Me

= δ′hZ
′
0Me± δ′hZ ′∆Me± δ′h

(
Z ′∆MZ2

) (
Z ′2MZ2

)−1
Z2Me. (A.12)

Given Assumption 2.2-(iii), we apply Lemma A.3 to the estimates that do not involve
∣∣Nb −N0

b

∣∣. Let us

focus on the third term,

Z ′∆MZ2/h
(
T 0
b − Tb

)
= Z ′∆Z2/h

(
T 0
b − Tb

)
−
(
Z ′∆X∆/

(
h
(
T 0
b − Tb

)) (
X ′X

)−1
X ′Z2

)
. (A.13)

Consider Z ′∆Z∆ (the argument for Z ′∆X∆ is analogous). By Lemma A.2, Z ′∆Z∆/h
(
T 0
b − Tb

)
uniformly

approximates the moving average of ΣZZ,t over the window (N0
b − T κh, N0

b ] for large K and small η.

Hence, as h ↓ 0, by using the same argument as in (A.10), the first term in (A.13) is

Z ′∆Z∆/h
(
T 0
b − Tb

)
= COP (1) , (A.14)

for some C > 0, uniformly in Tb. Using Lemma A.3, we deduce that the second term is thus also OP (1)
uniformly. Combining (A.12)-(A.14), we have

h−1/2 (δh)′
(
Z ′∆MZ2/h

(
T 0
b − Tb

)) (
Z ′2MZ2

)−1
Z2Me (A.15)

≤ h−1/4 Z ′∆MZ2
h
(
T 0
b − Tb

)OP (1)OP
(
h(5/4−κ)∧1/2

)
= OP

(
h1/4

)
,

where (Z ′2MZ2)−1 = OP (1) and the term OP(h(5/4−κ)∧1/2) term follows from equation (S.33) in CP

(2020a). So the right-and side of (A.15) is less than ε/4 in probability for large T . The second term of

(A.12) can be dealt with as in equation (S.41) in CP (2020a). We deduce that the second term of (A.12)

is such that

K−1h−(1−κ)−1/2δ′hZ
′
∆Me = h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh −

h−1/2

h1−κ δ
′
h

 T 0
b∑

k=Tb+1
zkhx

′
kh

(X ′X)−1 (
X ′e

)

≤ h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh − C

1
K

h−1/4

h1−κ

(
δ0
) T 0

b∑
k=Tb+1

zkhx
′
kh

(X ′X)−1 (
X ′e

)

≤ h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh − h−1/4OP (1)OP

(
h1/2

)
. (A.16)

Thus, using (A.12), (A.5) can be written as

h−1/2

Kh1−κ 2δ′hZ ′0Me± h−1/2

Kh1−κ 2δ′hZ ′∆Me± h−1/2

Kh1−κ 2δ′h
(
Z ′∆MZ2

) (
Z ′2MZ2

)−1
Z2Me− 2 h−1/2

Kh1−κ δ
′
h

(
Z ′0Me

)
≤ h−1/2

Kh1−κ

(
δ0
)′ T 0

b∑
k=Tb+1

zkhẽkh ±OP
(
h1/4

)
,

in view of (A.15) and (A.16). It remains to consider (A.6). We can use the results in CP (2020a). In

particular, following the steps from their equation (S.42)-(S.43) to their displayed equation before (S.44),

yields that (A.6) is stochastically small uniformly in Tb ∈ TK,η as h ↓ 0. Combining all the results the
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relationship in (A.11) holds, concludes the proof. �

A.2 Proofs of the Results of Section 4

The expression for Gh, Qh and Q0,h are given by, respectively, Gh (Nb) = Se,h
(
δ0, Nb

)
, Qh (Nb) =

Dh (Nb) + Se,h (Nb) and Q0,h (Nb) = Dh (Nb).

A.2.1 Proof of Lemma 4.1

Proof. We show that for any η > 0, there exists a C2 > 0 such that

Qh (δh, Nb)−Qh
(
δh, N

0
b

)
< −C2, (A.17)

for every Nb that satisfies
∣∣Nb −N0

b

∣∣ ≥ η. Recall the decomposition in (A.8), then (A.17) can be proved

by showing that for any ε2 > 0,

P

 sup
|Nb−N0

b |≥η
Se,h (δh, Nb) ≥ inf

|Nb−N0
b |≥η

∣∣∣Tb − T 0
b

∣∣∣Dh (δh, Nb)

 < ε2. (A.18)

Suppose that Nb < N0
b . The case with Nb ≥ N0

b can be proved similarly. By definition, note that∣∣Nb −N0
b

∣∣ ≥ η is equivalent to
∣∣Tb − T 0

b

∣∣ ≥ Tη. Then,

P

 sup
|Nb−N0

b |≥η
h−1/2 |Se,h (δh, Nb)| ≥ inf

|Nb−N0
b |≥η

h−1/2
∣∣∣Tb − T 0

b

∣∣∣Dh (δh, Nb)


≤ P

D−1
η,h sup
|Tb−T 0

b |≥Tη
h−1/2 |Se,h (δh, Nb)| ≥ η

 ,
where Dη,h = T inf|Tb−T 0

b |≥Tη h
−1/2Dh (Nb) . Lemma A.8 below shows that Dη,h is positive and bounded

away from zero. Thus, it is sufficient to show that sup|Tb−T 0
b |≥Tη h

−1/2 |Se,h (δh, Nb)| = oP (1) . The latter

result was shown to hold by CP (2020a) [cf. (S.31)]. Thus,

P

D−1
η,h sup
|Tb−T 0

b |≥Tη
h−1/2 |Se,h (δh, Nb)| ≥ η

 < ε2,

which implies (A.18) and concludes the proof. �

Lemma A.8. For any B > 0, let DB,h = inf|Tb−T 0
b |>TB Th

−1/2Dh (δh, Nb) . There exists an A > 0 such

that for every ε > 0, there exists a B <∞ such that P (DB,h ≥ A) ≤ 1− ε. That is, DB,h is positive and

bounded away from zero with high probability.

Proof. It follows from Lemma S.A.8 in CP (2020a). �

A.2.2 Proof of Theorem 4.1

We shall first prove a number of preliminary lemmas. We need the following additional notation. Recall

that l ∈ L and thus there exist some real number B sufficiently large and some a sufficiently small such

S-5



that

inf
|u|>B

l (u)− sup
|u|≤Ba

l (u) ≥ 0. (A.19)

Let ζh (u) = exp(γhG̃h(u)− Λ0(u)), ΓM = {u ∈ R : M ≤ |u| < M + 1} ∩ Γh and set

J1,M ,
ˆ

ΓM
ζh (u)πh (u) du, J2 ,

ˆ
Γh
ζh (u)πh (u) du. (A.20)

The proof involves showing the weak convergence toward the Gaussian process V (u) = W (u) − Λ0 (u)
where

W (u) =
{

2
(
δ0)′W1 (u) , u ≤ 0

2
(
δ0)′W2 (u) , u > 0

, Λ0 (u) =
{
|u|
(
δ0)′ΣZ,1δ

0, u ≤ 0
u
(
δ0)′ΣZ,2δ

0, u > 0
.

Finally, we introduce the following class of functions. The function fh : R → R is said to belong to the

family F if it possesses the following properties: (1) For a fixed h, fh (x) ↑ ∞ monotocically as x ↑ ∞ and

x ∈ [0, ∞); (2) For any b <∞, xb exp (−fh (x))→ 0 as h ↓ 0, and x→∞.

For v ≤ 0 define Q∗0,h (v) , −
(
δ0)′ (∑T 0

b

k=T 0
b

+bv/hc zkhz
′
kh)δ0, and G∗h (v) , 2

(
δ0)′∑T 0

b

k=T 0
b

+bv/hc zkhẽkh,

where ẽkh ∼ N (0, σ2
e,(k−1)h). Define analogously Q∗0,h (v) and G∗h (v) for v > 0, so that Q̃∗h (v) =

Q̃∗0,h (v) + G̃∗h (v). The following lemma follows from Proposition 3.2.

Lemma A.9. Let v ∈ Γ∗. If v ≤ 0, then Q∗0,h (v) u.c.p.⇒ [Z, Z]1 where [Z, Z]1 , [Z, Z]hbN0
b
/hc −

[Z, Z]hbtv/hc , tv , N0
b + v. If v > 0, then Q∗0,h (v) u.c.p.⇒ [Z, Z]2 where [Z, Z]2 , [Z, Z]hbtv/hc −

[Z, Z]hbN0
b
/hc , tv , N

0
b + v.

Lemma A.10. We have h−1/2G∗h (v) ⇒ W (v) in Db (C), where C ⊂ R is a compact set and W (v) =
((δ0)′Ω1δ

0)1/2W1(−v) if v < 0 and W (v) = ((δ0)′Ω2δ
0)1/2W2(v) if v > 0.

Proof.This result also follows from Proposition 3.2 adapted to the case of stationary regimes. Hence,

h−1/2G∗h (v)⇒ W (v) in Db (C). �

Lemma A.11. On {u ≤ K}, γhQ̃h (u) d≡ Q̃∗h (v)⇒ V (v), where “
d≡” signifies equivalence in distribution

and v ∈ Γ∗ =
(
−ϑN0

b , ϑ
(
N −N0

b

))
. On the other hand, exp (V (v)) P→ 0 for all v /∈ Γ∗.

Proof. Assume u ≤ 0 (i.e., Nb ≤ N0
b ). We now employ a change of time scale as in CP (2020a). On

the old time scale, given {|u| ≤ K}, Nb (u) varies on the time interval
[
N0
b −Kh1−κ, N0

b +Kh1−κ] for

some K < ∞. Lemma A.6 shows that the asymptotic behavior of QT (Tb (u)) − QT
(
T 0
b

)
is determined

by −δ′h (Z ′∆Z∆) δh ± 2δ′h (Z ′∆e). Next, observe that scaling the criterion function QT (Tb (u)) − QT
(
T 0
b

)
by ψ−1

h has the effect of changing the time scale s 7→ t , ψ−1
h s. That is, recall the processes Zs and

ẽs as defined in (2.3) and (3.1), respectively, and let Zψ,s , ψ
−1/2
h Zs, Wψ,e,s , ψ

−1/2
h We,s. Then, for

s ∈
[
N0
b −Kh1−κ, N0

b +Kh1−κ],
Zψ,s = ψ

−1/2
h σZ,sdWZ,s, Wψ,e,s = ψ

−1/2
h σe,sdWe,s. (A.21)

With s ∈
[
N0
b −Kh1−κ, N0

b +Kh1−κ] and v = ψ−1
h

(
N0
b − s

)
, using the properties of W.,s and the Fs-

measurability of σZ,s, σe,s, we have

Zψ,t = σZ,tdWZ,t, Wψ,e,t = σe,tdWe,t, t ∈
[
−ϑN0

b , ϑ
(
N −N0

b

)]
. (A.22)
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This results in a change of time scale which we apply to Z ′∆Z∆/ψh and Z ′∆ẽ/ψh so that

Z ′∆Z∆/ψh =
T 0
b∑

k=T 0
b

+bv/hc
zψ,khz

′
ψ,kh, Z ′∆ẽ/ψh =

T 0
b∑

k=T 0
b

+bv/hc
zψ,khẽψ,kh, (A.23)

where zψ,kh = zkh/
√
ψh and ẽψ,kh = ẽkh/

√
ψh with v ∈ Γ∗. In view of Condition 1, γh � h−1/2ψ−1

h . By

Lemma A.6 and (A.23),(
Qh (Nb)−Qh

(
N0
b

))
/ψh = −δh

(
Z ′∆Z∆

)
δh ± 2δ′h

(
Z ′∆ẽ

)
+ oP

(
h1/2

)
.

or γhQh (Nb) = −
(
δ0)′ Z ′∆Z∆

(
δ0)±2

(
δ0)′ (h−1/2Z ′∆ẽ

)
+oP (1) where ekh ∼ i.n.d.N

(
0, σ2

h,k−1h
)
, σh,k =

O(h−1/4)σe,k and ẽkh is the normalized error [i.e., ẽkh ∼ i.n.d.N (0, σ2
e,k−1h)] from (3.1). In summary,

γhQ̃h (u) d≡ Q̃∗h (v), while by Lemma A.9-A.10, Q̃∗h (v) ⇒ V (v) on Γ∗. For |u| > K and K large enough,

we have γhQ̃h (v) ↓ −∞ in probability upon using the same arguments as in Lemma A.12-A.13 and thus

we use the shorthand notation exp (V (u)) P→ 0 for all v /∈ Γ∗. �

Lemma A.12. For any l ∈ L and any ε > 0,

lim inf
h↓0

P
[ˆ

K≤|u|≤ηT 1−k
l (s− u) exp

(
γhQ̃h (u)

)
π
(
N0
b + u/rh

)
< ε

]
≥ 1− ε, (A.24)

for sufficiently large K and small η > 0.

Proof. Since l ∈ L, we have l (s− u) ≤ 1 + |s− u|m for m > 0. Thus, we shall find a sufficiently large K

such that

exp
(
γhQ̃h (u)

)
πh
(
N0
b + u/rh

) P→ 0, K ≤ |u| ≤ ηT 1−k, (A.25)

as h ↓ 0. By Assumption 4.3, π (·) satisfies π
(
N0
b

)
< Cπ, for some real number Cπ <∞. Thus, π (·) will

play no role in proving (A.25). By Lemma A.7, for large K there exists a C > 0 such that

lim inf
h↓0

P
[

sup
K≤|u|≤ηT 1−κ

Qh (δh, Nb)−Qh
(
δh, N

0
b

)
< −C

]
= 1.

Consequently, γhQ̃h (u) diverges to −∞ for values of u satisfying K ≤ |u| ≤ ηT 1−κ. By the property of

the exponential function, we have for some finite C1, C2 > 0, exp(γhQ̃h(u)) = C1 exp(−κγT 3/2−κC2) P→ 0
for all K ≤ |u| ≤ ηT 1−k. Combining all the arguments above, the latter result implies (A.24), which

concludes the proof. �

Lemma A.13. For every l ∈ L, and any ε, η > 0, we have

lim inf
h↓0

P
[ˆ
|u|≥ηT 1−κ

l (s− u) exp
(
γhQ̃h (u)

)
πh
(
N0
b + u/rh

)
< ε

]
≥ 1− ε. (A.26)

Proof. Since l ∈ L, we have l (s− u) ≤ 1 + |s− u|m for m > 0. We shall show

ˆ
|u|≥ηT 1−κ

(1 + |s− u|m)
∣∣∣exp

(
γhQ̃h (u)

)
πh
(
N0
b + u/rh

)∣∣∣ du = oP (1) . (A.27)
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The left-hand side above is no larger than

C

ˆ
|u|≥ηT 1−κ

∣∣∣s− T 1−κ
(
Nb −N0

b

)∣∣∣m exp
(
γhQ̃h (u)

)
πh
(
N0
b + u/rh

)
du

≤ Cm
(
T 1−κ

)m+1
ˆ
|Nb−N0

b |≥η/2

∣∣∣Nb −N0
b

∣∣∣m exp
(
γhQ̃h (u)

)
π (Nb) dNb,

where Cm <∞ may depend on m. By Lemma 4.1 there exists a c > 0 such that

lim inf
h↓0

P

 sup
|Nb−N0

b |≥η/2
exp

(
γhQ̃h (u)

)
≤ exp (−cγh)

 = 1.

Then, the left-hand side of (A.27) is bounded by

Cm
(
T 1−κ

)m+1
e−cγh

ˆ
[0, N ]

Nm
b π (Nb) dNb = oP (1) ,

since exp (−cγh)→ 0 at a rate faster than
(
T 1−κ)m+1 →∞. This concludes the proof. �

Lemma A.14. Let u1, u2 ∈ R being of the same sign and satisfying 0 < |u1| < |u2| < K <∞. For any

integer r > 0 and some constants cr and Cr which depend on r only, we have

E
[(
ζ

1/2r
h (u2)− ζ1/2r

h (u1)
)2r
]
≤ cr

∣∣∣∣(δ0
)′

(|u2 − u1|Σi) δ0
∣∣∣∣r ≤ Cr |u2 − u1|r ,

where i = 1 if u1 < 0 and i = 2 if u1 > 0.

Proof. The proof is given only for the case u2 > u1 > 0. We follow Lemma III.5.2 in Ibragimov

and Has’minskǐı (1981). Let V (ui) = exp (V (ui)) for i = 1, 2 where V (ui) = W (ui) − Λ0 (ui) and

Vu1 (u2) , exp (V (u2)− V (u1)) . We have

E
[(
V1/2r (u2)− V1/2r (u1)

)2r
]

=
2r∑
j=0

(
2r
j

)
(−1)j Eu1

[
Vj/2ru1 (u2)

]
.

For any given u ∈ R, V· (u) is the exponential of a Gaussian random variable, and thus

Eu1

[
Vj/2ru1 (u2)

]
= exp

(
1
2

(
j

2r

)2
4
(
δ0
)′

(|u2 − u1|Σ2) δ0 − j

2r

∣∣∣Λ0 (u2)− Λ0 (u1)
∣∣∣) . (A.28)

Letting d , exp
(
j (2r)−1 2

(
δ0)′ (|u2 − u1|Σ2) δ0 −

∣∣Λ0 (u2)− Λ0 (u1)
∣∣) , we have

E
[(
V1/2r (u2)− V1/2r (u1)

)2m
]

=
2r∑
j=0

(
2r
j

)
(−1)j dj/2r.

We need to study three different cases. Let $ , 2
(
δ0)′ (|u2 − u1|Σ2) δ0 −

∣∣Λ0 (u2)− Λ0 (u1)
∣∣.

(1) $ < 0. Note that

d = exp
(
j

r

(
δ0
)′

(|u2 − u1|Σ2) δ0 − 2
∣∣∣∣(δ0

)′
(|u2 − u1|Σ2) δ0

∣∣∣∣+$

)
= exp

(
−2r − j

r

(
δ0
)′

(|u2 − u1|Σ2) δ0
)
e$,
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which then yields

E
[(
V1/2r (u2)− V1/2r (u1)

)2r
]
≤ pr (a) , (A.29)

where pr (a) ,
∑2r
j=0

(2r
j

)
(−1)j a(2r−j) and a = exp

(
−r−1 (δ0)′ (|u2 − u1|Σ2) δ0

)
.

(2) 2
(
δ0)′ (|u2 − u1|Σ2) δ0 =

∣∣Λ0 (u2)− Λ0 (u1)
∣∣. This case is the same as the previous one but with

a = exp
(
−r−1 (δ0)′ (|u2 − u1|Σ2) δ0

)
.

(3) $ > 0. Upon simple manipulations, d = exp
(
− (2r − j) r−1 (δ0)′ (|u2 − u1|Σ2) δ0

)
e$. Then

E
[(
V1/2r (u2)− V1/2r (u1)

)2r
]
≤ e$/2r

2r∑
j=0

(
2r
j

)
(−1)j a(2r−j),

with a = exp
(
−r−1 (δ0)′ (|u2 − u1|Σ2) δ0

)
.

We focus on the first case only. It is not difficult to see that the same proof is valid for the other

cases. It is enough to show that at the point a = 1, the polynomial pr (a) admits a root of multiplicity r.

This follows from the equalities pr (1) = p
(1)
r (1) = · · · = p

(r−1)
r (1) = 0. Then, note that p

(i)
r (a) is a linear

combination of summations Sk (k = 0, 1, . . . , 2i) given by Sk =
∑2r
j=0

(2r
j

)
jk. Thus, all one needs to verify

is that that Sk = 0 for k = 0, 1, . . . , 2r−2. Sk can be found by applying the k-fold of the operator a (d/da)
to the function

(
1− a2)2r and evaluating it at a = 1. Consequently, Sk = 0 for k = 0, 1, . . . , 2r−1. Using

this into equation (A.29),

E
[(
V1/2r (u2)− V1/2r (u1)

)2r
]
≤ (1− a)r p̃r (a) ≤

(
r−1

(
δ0
)′

(|u2 − u1|Σ2) δ0
)r
p̃r (a) , (A.30)

where p̃r (a) is a polynomial of degree r2−r, and the last inequality follows from 1−e−c ≤ c, for c > 0. Now,

write ζ
1/2r
h (u2, u1) = ζ

1/2r
h (u2)−ζ1/2r

h (u1). By Lemma A.10, the continuous mapping theorem and (A.30),

we have limh→0 E[(ζ1/2r
h (u2, u1))2r] ≤ (1− a)r p̃r (a) . Since j ≤ 2r, we set cr = max0≤a≤1 p̃r (a) /rr <∞

and the claim of the lemma follows since
∥∥δ0∥∥ , Σi <∞. �

Lemma A.15. Let 0 < C <∞ and u1, u2 ∈ R being of the same sign satisfying 0 < |u1| < |u2| < K <∞.

Then, for all h sufficiently small, we have

E
[(
ζ

1/4
h (u2)− ζ1/4

h (u1)
)4
]
≤ C2 |u2 − u1|2 . (A.31)

Furthermore, for some constant C1 as in Lemma A.14 we have

P [ζh (u) > exp (−3C1 |u| /2)] ≤ exp (−C1 |u| /4) . (A.32)

Proof. Use Lemma A.14 with r = 2 to verify (A.31). For (A.32), assume u > 0. By Markov’s inequality

and Lemma A.14,

P [ζh (u) > exp (−3C1 |u| /2)] ≤ exp (3C1 |u| /4)E
[
ζ

1/2
h (u)

]
≤ exp

(3C1 |u|
4 −

(
δ0
)′

(|u|Σ2) δ0
)
≤ exp

(
−C1 |u|

4

)
.�

Lemma A.16. Under the conditions of Lemma A.15, for any $ > 0 there exists a finite real number c$
and a h such that for all h < h, P[sup|u|>M ζh (u) > M−$] ≤ c$M−$.
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Proof. It can be easily shown to follow from the previous lemma. �

Lemma A.17. For a small ε ≤ ε, where ε may depend on π (·), there exists 0 < C <∞ such that

P
[ˆ ε

0
ζh (u)πh (u) du < επ0

]
< Cε1/2. (A.33)

Proof. Since E (ζh (0)) = 1 while E (ζh (u)) ≤ 1 for sufficiently small h > 0,

E |ζh (u)− ζh (0)| ≤
(
E
(
ζ

1/2
h (u) + ζ

1/2
h (0)

)2
E
((
ζ

1/2
h (u)− ζ1/2

h (0)
)2
))1/2

≤ C |u|1/2 , (A.34)

where we used Lemma A.14 with r = 1. By Assumption 4.3,
∣∣πh (u)− π0∣∣ ≤ B

(
T 1−κ)−1 |u|, with

B > 0. Given that |u| < ε, it holds that π0/2 < πh (u). Thus, for a small ε > 0,
´ ε

0 ζh (u)πh (u) du >
2−1π0 ´ ε

0 ζh (u) du. We can then use ζh (0) = 1 to yield,

P
[ˆ ε

0
ζh (u)πh (u) du < 2−1ε

]
≤ P

[ˆ ε

0
(ζh (u)− ζh (0)) du < −2−1ε

]
≤ P

[ˆ ε

0
|ζh (u)− ζh (0)| du > 2−1ε

]
.

By Markov’s inequality together with inequality (A.34), the right-hand side above is less than or equal to

2ε−1 ´ ε
0 E |ζh (u)− ζh (0)| du < 2Cε1/2. �

Lemma A.18. For fh ∈ F , and M sufficiently large, there exist constants c, C > 0 such that

P [J1,M > exp (−cfh (M))] ≤ C
(
1 +MC

)
exp (−cfh (M)) . (A.35)

Proof. Since u ∈ Γh, and given the differentiability of π (·), we consider for simplicity the case of

the uniform prior (i.e., πh (u) = 1 for all u). We divide the open interval {u : M ≤ |u| < M + 1}
into I disjoint segments and denote the i-th segment by Πi. Choose a point ui ∈ Πi and define

JΠ
1,M ,

∑
i∈I ζh (ui) Leb (Πi) =

∑
i∈I
´

Πi ζh (u) du. Then,

P
[
JΠ

1,M > 4−1 exp (−cfT (M))
]
≤ P

[
max
i∈I

ζ
1/2
h (ui) (Leb (ΓM ))1/2 > (1/2) exp (−fh (M) /2)

]
≤
∑
i∈I

P
[
ζ

1/2
h (ui) > (1/2) (Leb (ΓM ))−1/2 exp (−fh (M) /2)

]
≤ 2I (Leb (ΓM ))1/2 exp (−fh (M) /12) , (A.36)

where the last inequality follows from applying the second part of Lemma A.15 to each summand. For a

sufficiently large M , exp (−fh (M) /12) < 1/2 and thus,

P [J1,M > exp (−fh (M) /2)] ≤ P
[∣∣∣J1,M − JΠ

1,M

∣∣∣ > 2−1 exp (−fh (M) /2)
]

+ P
[
JΠ

1,M > exp (−fh (M))
]
.

(A.37)

Let us focus on the first term:

E
[
J1,M − JΠ

1,M

]
≤
∑
i∈I

ˆ
Πi

E
∣∣∣ζ1/2
h (u)− ζ1/2

h (ui)
∣∣∣ du

≤
∑
i∈I

ˆ
Πi

(
E
∣∣∣ζ1/2
h (u) + ζ

1/2
h (ui)

∣∣∣E ∣∣∣ζ1/2
h (u)− ζ1/2

h (ui)
∣∣∣)1/2

du

≤ C (1 +M)C
∑
i∈I

ˆ
Πi
|ui − u|1/2 du,
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where the last inequality uses Lemma A.14 and the fact that u < M + 1. Note that each summand on

the right-hand side above is less than C
(
MI−1)3/2. Thus, we can find numbers C1 and C2 such that

E
[
J1,M − JΠ

1,M

]
≤ C1

(
1 +MC2

)
I−1/2. (A.38)

Using (A.36) and (A.38) into (A.37), we have

P [J1,M > exp (−fh (M) /2)] ≤ C1
(
1 +MC2

)
I−1/2 + 2I (Leb (ΓM ))1/2 exp (−fh (M) /12) .

The claim of the lemma follows choosing a I that satisfies 1 ≤ I3/2 exp (−fh (M) /12) ≤ 2. �

Lemma A.19. For fh ∈ F , and M sufficiently large, there exist constants c, C > 0 such that

E [J1,M/J2] ≤ C
(
1 +MC

)
exp (−cfh (M)) . (A.39)

Proof. Note that J1,M/J2 ≤ 1 and thus, for an arbitrary ε > 0,

E [J1,M/J2] ≤ P [J1,M > exp (−cfh (M) /2)] + 4ε−1 exp (−cfh (M)) + P
[ˆ

Γh
ζh (u) du < ε/4

]

where we used Lemma A.18 for the first term. In view of the relationship in (A.33), P[
´

Γh ζh (u) du <
ε/4] ≤ Cε1/2. To conclude the proof, choose ε = exp ((−2c/3) fh (M)). �

Proof of Theorem 4.1. Let p1,h (u) , p̃h (u) /ph, where p̃h (u) = exp(γh(G̃h(u) + Q̃0,h(u))) and ph ,´
Γh p1,h (w) dw. By definition, N̂GL

b = Nλ̂GL
b minimizes

ˆ
Γ 0
l (rh (s− u)) exp

(
γh
(
G̃h (u) + Q̃0,h (u)

))
π (u) du, s ∈ Γ 0.

Changing variables and using simple manipulations, the expression above is equal to

r−1
h ph

ˆ
Γh
l
(
rh
(
s−N0

b

)
− u

)
p1,h (u)πh (u) du, (A.40)

from which it follows that ξl,h , ϑ−1T 1−κ(λ̂GL
b − λ0) is the minimum of the function

Ψl,h (s) ,
ˆ

Γh
l (s− u) p̃h (u)π

(
N0
b + u/rh

)
´

Γh p̃h (w)π
(
N0
b + w/rh

)
dw

du. (A.41)

Lemma A.11 shows that, under Condition 1, the normalizing factor γh acts as a change of time scale

s 7→ ψ−1
h s since rh � ψ−1

h , where ah � bh signifies bh/c ≤ ah ≤ cbh for some constant c. The change of

time scale then implies that the sample criterion Qh (Nb) is evaluated at Nb = N0
b + ϑv. It also suggests

the following change of variable through the substitution a = ϑψhu,

Ψl,h (s) =
ˆ

Γ∗
l
(
(ϑψh)−1 (ϑψhs− a)

) exp
(
G̃∗h (a) + Q̃∗0,h (a)

)
π
(
N0
b + a

)
´

Γ∗ exp
(
G̃∗h (w) + Q̃∗0,h (w)

)
π
(
N0
b + w

)
dw

da, (A.42)

where Γ∗ =
(
−ϑN0

b , ϑ
(
N −N0

b

))
and the Quasi-prior is defined on the “fast time scale”. This implies

that Ψ∗l,h (s) , Ψl,h (ϑψhs) is minimized by ξl,h , Th(λ̂GL
b − λ0). The next step involves showing the

finite-dimensional convergence in distribution of the function Ψ∗l,h (s) to Ψ∗l (s) and the tightness of the

sequence of functions (Ψ∗l,h (s)) on the space Cb (Γ∗). This gives the weak convergence Ψ∗l,h ⇒ Ψ∗l on
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Cb (Γ∗). The final part of the proof requires showing that (a) any element of the set of minimizers of the

sample criterion is stochastically bounded, and (b) the length of such set converges to zero as h ↓ 0. Note

that we can deduce certain tail properties of Ψ∗l,h from that of Ψl,h on {u ∈ R, |u| ≤ K} as K →∞. Thus,

we shall sometimes study the behavior of Ψl,h below. Given the boundedness of π (·) [cf. Assumption

4.3], Lemma A.18-A.19 imply that, for any ν > 0, we can find a h such that for all h < h,

E

ˆ
ΓM

exp
(
γh
(
G̃h (u) + Q̃0,h (u)

))
´

Γh exp
(
γh
(
G̃h (u) + Q̃0,h (u)

))
dw

du

 ≤ cν
Mν

. (A.43)

Furthermore, by Lemma A.12-A.13, for K <∞,

Ψl,h (s) =
ˆ
{u∈R,|u|≤K}

l (s− u) p̃h (u)´
{u∈R,|u|≤K} p̃h (w) dwdu+ oP (1) .

The last two relationships extend to Ψ∗l,h (s) and in particular (A.43) shows the tail behavior of Ψl,h (s).
On the region {|u| ≤ K}, the change of time scale u 7→ ψhu = v implies that we need to analyze the

behavior of Ψ∗l,h (s). Thus, we show the convergence of the marginal distributions of the function Ψ∗l,h (s)
to the marginals of Ψ∗l (s) defined in Definition 4.1. Choose a finite integer n, and arbitrary real numbers

aj (j = 0, . . . , n). Let ζ∗h (v) = G̃∗h (v) + Q̃∗0,h (v). The estimate

n∑
j=1

aj

ˆ
|v|≤K

l (sj − v) ζ∗h (v)π
(
N0
b + u

)
dv + a0

ˆ
|v|≤K

ζh (v)π
(
N0
b + v

)
dv (A.44)

converges in distribution to the random variable

n∑
j=1

aj

ˆ
|v|≤K

l (sj − v) exp (V (v))π
(
N0
b + v

)
dv + a0

ˆ
|v|≤K

exp (V (v))π
(
N0
b + v

)
dv,

where V (v) = W (v)−Λ0 (v), since by Lemma A.14-A.15 we can apply Theorem I.A.22 in Ibragimov and

Has’minskǐı (1981). We can then use the Cramer-Wold Theorem [cf. Theorem 29.4 in Billingsley (1995)]

to establish the convergence in distribution of the vector

ˆ
|v|≤K

l (si − v) ζ∗h (v)π
(
N0
b + v

)
dv, . . . ,

ˆ
|v|≤K

l (sn − v) ζ∗h (v)π
(
N0
b + v

)
dv,

ˆ
|v|≤K

ζ∗h (v)π
(
N0
b + v

)
dv,

to the marginal distributions of the vector

ˆ
|v|≤K

l (si − v) exp (V (v))π
(
N0
b + v

)
dv, . . . ,

ˆ
|v|≤K

l (sn − v) exp (V (v))π
(
N0
b + v

)
dv,

ˆ
|v|≤K

exp (V (v))π
(
N0
b + v

)
dv.

Note that the above integrals are equal to zero if v /∈ Γ∗, because in the latter result there is an intermediate

step involving the change of time scale. That is, v /∈ Γ∗ corresponds to tail behavior as described in (A.43)

and the equation right below it. Then, for any K1, K2 <∞, the marginal distributions of

´
|v|≤K1

l (s− v) exp
(
G̃∗h (v) + Q̃∗0,h (v)

)
π
(
N0
b + v

)
dv´

|w|≤K2
exp

(
G̃∗h (w) + Q̃∗0,h (w)

)
π
(
N0
b + w

)
dw

,
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converge to the marginals of
´
|v|≤K1

l (s− v)π
(
N0
b + v

)
exp (V (v)) /

(´
|w|≤K2

exp (V (w))π
(
N0
b + w

)
dw
)
dv.

By the same reasoning, the marginal distributions of

ˆ
M≤|v|<M+1

exp
(
G̃∗h (v) + Q̃∗0,h (v)

)
´
|w|≤K2

exp
(
G̃∗h (w) + Q̃∗0,h (w)

)
dw

dv,

converge to the distribution of
´
M≤|v|<M+1(exp(V (v)π(N0

b + v))/
´
|w|≤K2

exp(V (w))π(N0
b +w)dw)dv. In

view of (A.43) which gives a bound on the tail behavior of the mean of the Quasi-posterior on the original

time scale, we have

Ψ∗l,h (s) =
ˆ

Γ∗
l (s− v) exp (V (v))π

(
N0
b + v

)
dv´

Γ∗ exp (V (w))π
(
N0
b + w

)
dw

+ oP (1) . (A.45)

This is sufficient for the convergence of the finite-dimensional distributions of Ψ∗l,h (s) to those of Ψ∗l (s) .
We now turn to the tightness of the sequence of functions {Ψ∗l,h(s)}. We shall show that the probabi-

lity distributions in C ([−K, K]) (i.e., the space of continuous functions on [−K, K]) generated by the

contractions of the functions Ψ∗l,h (s) on s ∈ [−K, K] are tight. For any l ∈ L, we have the inequality

l (u) ≤ 2r(1 + |u|2)r, for some r. Let

HK ($) ,
ˆ
R

sup
|s|≤K, |y|≤$

|l (s+ y − u)− l (s− u)|
(
1 + |u|2

)−r−1
du.

We show that lim$↓0HK ($) = 0. Note that for any c > 0 we can choose a M such that

ˆ
|u|>M

sup
|s|≤K, |y|≤$

|l (s+ y − u)− l (s− u)|
(
1 + |u|2

)−r−1
du < c.

We apply Lusin’s theorem [cf. Section 3.3 of Royden and Fitzpatrick (2010)]. Let L denote the upper

bound of l (·) on the set {u ∈ R : |u| ≤ K + 2M}. By the measurability of l (·), we can find a continuous

function J (u) in the interval {u : |v| ≤ K + 2M} which equals l (u) except on a set whose measure does

not exceed c(2L)−1. Denote the modulus of continuity of J (·) by wJ ($). Without loss of generality

assume |J (u)| ≤ L on {u : |u| ≤ K + 2M}. Then,

ˆ
|u|>M

sup
|s|≤K, |y|≤$

|l (s+ y − u)− l (s− u)|
(
1 + |u|2

)−r−1
du

≤ wJ ($)
ˆ
R

(
1 + |u|2

)−r−1
du+ 2LLeb {u ∈ R : |u| ≤ K + 2M, l 6= J} ,

and L ≤ CwJ ($) + c for some C <∞. Accordingly, HK ($) ≤ CwJ ($) + 2c, with the property that c

can be chosen arbitrary small and wJ ($)→ 0 as $ ↓ 0 (holding for each fixed c) by definition. Definition

4.1 implies that we can find a number C <∞ such that

E
[

sup
|s|≤K, |y|≤$

∣∣∣Ψ∗l,h (s+ y)−Ψ∗l,h (s)
∣∣∣]

≤
ˆ
R

sup
|s|≤K, |y|≤$

|l (s+ y − u)− l (s− u)|E
(

ζh (u)πh (u)´
Γh ζh (w)πh (w) dw

)
du ≤ CHK ($) .

The tightness of Ψ∗l,h (s) on s ∈ Γ∗ is established by using Markov’s inequality together with the above

bound. It remains to study the oscillations of the minimum points of the sample function Ψ∗l,h. Consider
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an open bounded interval A satisfying P
[
ξ0
l ∈ b (A)

]
= 0, where b (A) denotes the boundary of the set

A. Define the functionals HA (Ψ) = infs∈A Ψ∗l (s) and HAc (Ψ) = infs∈Ac Ψ∗l (s), where Ac is the set

complementary to A. Let Mh denote the set of absolute minimum points of the function Ψ∗l,h (s). By the

definition of λ̂GL
b we have that lim suph↓0 E[l(Th(λ̂GL

b − λ0))] <∞. This implies that any minimum point

ξ ∈Mh of the sample criterion function is uniformly stochastically bounded, i.e.,

lim
K→∞

P [Mh * {s : |s| ≤ K}] = 0. (A.46)

Next, note that

P [Mh ⊂ A] = P [HA (Ψ) < HAc (Ψ) , Mh ⊂ {s : |s| ≤ K}]
≥ P [HA (Ψ) < HAc (Ψ)]− P [Mh * {s : |s| ≤ K}] .

Furthermore, the relationships

lim inf
h↓0

P [Mh ⊂ A] ≥ P [HA (Ψ) < HAc (Ψ)]− sup
h

P [Mh * {s : |s| ≤ K}] ,

and lim suph↓0 P [Mh ⊂ A] ≤ P [HA (Ψ) < HAc (Ψ)] are valid. As for the minimum point of the popu-

lation criterion Ψ∗l (·), we have P
[
ξ0
l ∈ A

]
≤ P [HA (Ψ) < HAc (Ψ)], and P

[
ξ0
l ∈ A

]
+ P

[∣∣ξ0
l

∣∣ > K
]
≥

P [HA (Ψ) ≤ HAc (Ψ)]. The uniqueness assumption on the population criterion (cf. Assumption 4.2) and

(A.46) leads to limK→∞{suph≤h P [Mh * {s : |s| ≤ K}] + P
[∣∣ξ0

l

∣∣ > K
]
} = 0, for a small h > 0. Hence,

lim
h↓0

P [Mh ⊂ A] = P
[
ξ0
l ∈ A

]
. (A.47)

In the last step of the proof, we show that the length of the set Mh converges to zero in probability as

h ↓ 0. Let Ad denote an interval in R centered at the origin and of length d < ∞. In view of (A.47),

limd→∞ suph↓0 P [Mh * Ad] = 0. Fix any ε > 0 and divide Ad into admissible subintervals whose lengths

do not exceed ε/2. We have,

P
[

sup
si,sj∈Mh

|si − sj | > ε

]
≤ P [Mh * Ad] + (1 + 2d/ε) supP

[
HA

(
Ψ∗l,h

)
= HAc

(
Ψ∗l,h

)]
,

where 1 + 2d/ε is an upper bound on the number of subintervals and the supremum is taken over all

possible open bounded subintervals A ⊂ Ad. Given Ψ∗l,h ⇒ Ψ∗l , we have P[HA(Ψ∗l,h) = HAc(Ψ∗l,h)] →
P[HA(Ψ) = HAc(Ψ)] as h ↓ 0. Since P [HA (Ψ) = HAc (Ψ)] = 0 and d can be chosen large, we have

P[supsi,sj∈Mh
|si − sj | > ε] = o (1). Given that ε > 0 can be chosen arbitrary small we have that the

distribution of ξl,h = Th(λ̂GL
b − λ0) converges to the distribution of ξ0

l . �

A.3 Proofs of Section 6

A.3.1 Proof of Theorem 6.1

The next tree lemmas correspond to Lemma A.29-A.31 from Casini and Perron (2020c), respectively.

Lemma A.20. For $ > 3/4, we have limh↓0 lim sup|s|→∞
∣∣∣Ŵh (s)

∣∣∣ / |s|$ = 0 P-a.s.

Lemma A.21. {Ŵh} converges weakly toward W on compact subsets of Db.
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Lemma A.22. Fix 0 < a <∞. For l ∈ L and any positive sequence {ah} satisfying ah
P→ a,

ˆ
R
|l (r − s)| exp

(
Ŵh (s)

)
exp (−ah |s|) ds

d→
ˆ
R
|l (r − s)| exp ((W (s))) exp (−a |s|) ds.

Proof of Theorem 6.1. Let C ⊂ R be compact. Suppose γh satisfies Condition 1. Then,

Ψ̂∗l,h (s) =
ˆ

Γ̂∗
l (s− v)

exp
(
V̂h (v)

)
π
(
N̂GL
b + v

)
´

Γ̂∗ exp
(
V̂h (w)

)
π
(
N̂GL
b + w

)
dw

dv + oP (1) .

Using Lemma A.21, V̂h ⇒ V in Db (C). From Assumption 6.1-(i), Γ̂∗ can be replaced by Γ∗ for small

enough h if we show that the integral as a function of N̂GL
b is continuous. Note that the integrand is

Riemann integrable and thus the integral considered as a map is continuous. Since V is P-a.s. continuous,

then the desired result follows by the continuity of the composition of continuous functions. Using the

same steps as in the proof of Theorem 4.1 together with Lemma A.22 yields the result. �
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